
Introduction to The CImg Library
C++ Template Image Processing Toolbox (version 1.5)

David Tschumperlé

CNRS UMR 6072 (GREYC) - Image Team

This document is distributed under the CC-BY-NC-SA license

• Document available at : http://img.soureforge.net/CImg slides.pdf

Outline - PART I of II : CImg Library Overview

• Context : Image Processing with C++.

• Aim and targeted audience.

• Why considering The CImg Library ?

• CImg<T> : A class for image manipulation.

• Image construction, data access, math operators.

• Basic image transformations.

• Drawing things on images.

• CImgList<T> : Image collection manipulation.

• Basic manipulation functions.

• CImgDisplay : Image display and user interaction.

• Displaying images in windows.

Outline - PART II of II : More insights

• Image Filtering : Goal and principle.

• Convolution - Correlation.

• Morphomaths - Median Filter.

• Anisotropic smoothing.

• Other related functions.

• Image Loops : Using predefined macros.

• Simple loops.

• Neighborhood loops.

• The plug-in mechanism.

• Dealing with 3D objects.

• Shared images.

PART I of II

Outline - PART I of II : CImg Library Overview

⇒ Context : Image Processing with C++.

• Aim and targeted audience.

• Why considering The CImg Library ?

• CImg<T> : A class for image manipulation.

• Image construction, data access, math operators.

• Basic image transformations.

• Drawing things on images.

• CImgList<T> : Image collection manipulation.

• Basic manipulation functions.

• CImgDisplay : Image display and user interaction.

• Displaying images in windows.

Outline - PART I of II : CImg Library Overview

• Context : Image Processing with C++.

⇒ Aim and targeted audience.

• Why considering The CImg Library ?

• CImg<T> : A class for image manipulation.

• Image construction, data access, math operators.

• Basic image transformations.

• Drawing things on images.

• CImgList<T> : Image collection manipulation.

• Basic manipulation functions.

• CImgDisplay : Image display and user interaction.

• Displaying images in windows.

Context

• Digital Images.

• On a computer, image data stored as a discrete array of values (pixels or voxels).

Context

• Acquired digital images have a lot of different types :

– Domain dimensions : 2D (static image), 2D + t (image sequence), 3D

(volumetric image), 3D + t (sequence of volumetric images), ...

Context

• Acquired digital images have a lot of different types :

– Domain dimensions : 2D (static image), 2D + t (image sequence), 3D

(volumetric image), 3D + t (sequence of volumetric images), ...

– Pixel dimensions : Pixels can be scalars, colors, N −D vectors, matrices, ...

Context

• Acquired digital images have a lot of different types :

– Domain dimensions : 2D (static image), 2D + t (image sequence), 3D

(volumetric image), 3D + t (sequence of volumetric images), ...

– Pixel dimensions : Pixels can be scalars, colors, N −D vectors, matrices, ...

– Pixel data range : depends on the sensors used for acquisition, can be N-bits
(usually 8,16,24,32...), sometimes float-valued.

Context

• Acquired digital images have a lot of different types :

– Domain dimensions : 2D (static image), 2D + t (image sequence), 3D

(volumetric image), 3D + t (sequence of volumetric images), ...

– Pixel dimensions : Pixels can be scalars, colors, N −D vectors, matrices, ...

– Pixel data range : depends on the sensors used for acquisition, can be N-bits
(usually 8,16,24,32...), sometimes float-valued.

– Type of sensor grid : Rectangular, Octagonal, ...

Context

• Acquired digital images have a lot of different types :

– Domain dimensions : 2D (static image), 2D + t (image sequence), 3D

(volumetric image), 3D + t (sequence of volumetric images), ...

– Pixel dimensions : Pixels can be scalars, colors, N −D vectors, matrices, ...

– Pixel data range : depends on the sensors used for acquisition, can be N-bits
(usually 8,16,24,32...), sometimes float-valued.

– Type of sensor grid : Rectangular, Octagonal, ...

• All these different image types are digitally stored using different file formats :

– PNG, JPEG, BMP, TIFF, TGA, DICOM, ANALYZE, ...

Context

(a) I1 : W × H → [0, 255]3 (b) I2 : W × H × D → [0, 65535]32 (c) I3 : W × H × T → [0, 4095]

• I1 : classical RGB color image (digital photograph, scanner, ...) (8 bits)

• I2 : DT-MRI volumetric image with 32 magnetic field directions (16 bits)

• I3 : Sequence of echography images (12 or 16 bits).

Context

• Image Processing and Computer Vision aim at the elaboration of numerical
algorithms able to automatically extract features from images, interpret them and
then take decisions.

⇒ Conversion of a pixel array to a semantic description of the image.

- Is there any white pixel in this image ?

- Is there any contour in this image ?

- Is there any object ?

- Where’s the car ?

- Is there anybody driving the car ?

Context

Some observations about Image Processing and Computer Vision :

• They are huge and active research fields.

• The final goal is almost impossible to achieve !

• There have been thousands (millions?) of algorithms proposed in this field, most
of them relying on strong mathematical modeling.

• The community is varied and not only composed of very talented programmers.

⇒ How to design a reasonable and useable programming library for such people ?

Observation

• Most of advanced image processing techniques are “type independent”.

• Ex : Binarization of an image I : Ω → Γ by a threshold ǫ ∈ R.

Ĩ : Ω → {0, 1} such that ∀p ∈ Ω, Ĩ(p) =

{

0 if ‖I(p)‖ < ǫ

1 if ‖I(p)‖ >= ǫ

I1 : Ω ∈ R
2 −→ [0, 255] I2 : Ω ∈ R

3 −→ R

Context

• Implementing an image processing algorithm should be as independent as
possible on the image format and coding.

⇒ Generic Image Processing Libraries :

(...), FreeImage, Devil, (...), OpenCV, Pandore, CImg, Vigra, GIL, Olena, (...)

• C++ is a “good” programming language for solving such a problem :

- Genericity is possible, quite elegant and flexible (template mechanism).
- Compiled code. Fast executables (good for time-consuming algorithms).
- Portable , huge base of existing code.

• Danger : Too much genericity may lead to unreadable code.

Too much genericity... (Example 1).

Too much genericity... (Example 2).

• Strictly speaking, this is more C++ stuffs (problems?) than image processing.

⇒ Definitely not suitable for non computer geeks !!

The CImg Library

• An open-source C++ library aiming to simplify the development of image
processing algorithms for generic (enough) datasets (CeCILL License).

The CImg Library

• An open-source C++ library aiming to simplify the development of image
processing algorithms for generic (enough) datasets (CeCILL License).

• Primary audience : Students and researchers working in Computer Vision and
Image Processing labs, and having standard notions of C++.

The CImg Library

• An open-source C++ library aiming to simplify the development of image
processing algorithms for generic (enough) datasets (CeCILL License).

• Primary audience : Students and researchers working in Computer Vision and
Image Processing labs, and having standard notions of C++.

• It defines a set of C++ classes able to manipulate and process image objects.

The CImg Library

• An open-source C++ library aiming to simplify the development of image
processing algorithms for generic (enough) datasets (CeCILL License).

• Primary audience : Students and researchers working in Computer Vision and
Image Processing labs, and having standard notions of C++.

• It defines a set of C++ classes able to manipulate and process image objects.

• Started in late 1999, the project is now hosted on Sourceforge since December
2003 :

http://img.soureforge.net/

Outline - PART I of II : CImg Library Overview

• Context : Image Processing with C++.

• Aim and targeted audience.

⇒ Why considering The CImg Library ?

• CImg<T> : A class for image manipulation.

• Image construction, data access, math operators.

• Basic image transformations.

• Drawing things on images.

• CImgList<T> : Image collection manipulation.

• Basic manipulation functions.

• CImgDisplay : Image display and user interaction.

• Displaying images in windows.

Main characteristics

CImg is lightweight :

• Total size of the full CImg (.zip) package : approx. 12.5 Mb.

Main characteristics

CImg is lightweight :

• Total size of the full CImg (.zip) package : approx. 12.5 Mb.

• All the library is contained in a single header file CImg.h , that must be included in
your C++ source :

#inlude �CImg.h� // Just do that...

using namespae img library; // ...and you an play with the library

Main characteristics

CImg is lightweight :

• Total size of the full CImg (.zip) package : approx. 12.5 Mb.

• All the library is contained in a single header file CImg.h , that must be included in
your C++ source :

#inlude �CImg.h� // Just do that...

using namespae img library; // ...and you an play with the library

• The library itself only takes 2.2Mb of sources (approximately 45000 lines).

• The library package contains the file CImg.h as well as documentation, examples
of use, and additional plug-ins.

Main characteristics

CImg is lightweight :

• What ? a library defined in a single header file ?

– Simplicity “a la STL”.

Main characteristics

CImg is lightweight :

• What ? a library defined in a single header file ?

– Simplicity “a la STL”.
– Used template functions and structures know their type only during the

compilation phase :
⇒ No relevance in having pre-compiled objects (.cpp→.o).

Main characteristics

CImg is lightweight :

• What ? a library defined in a single header file ?

– Simplicity “a la STL”.
– Used template functions and structures know their type only during the

compilation phase :
⇒ No relevance in having pre-compiled objects (.cpp→.o).

– Why not several headers (one for each class) ?
⇒ Interdependence of the classes : all headers would be always necessary.

Main characteristics

CImg is lightweight :

• What ? a library defined in a single header file ?

– Simplicity “a la STL”.
– Used template functions and structures know their type only during the

compilation phase :
⇒ No relevance in having pre-compiled objects (.cpp→.o).

– Why not several headers (one for each class) ?
⇒ Interdependence of the classes : all headers would be always necessary.

– Only used functions are actually compiled :
⇒ Small generated executables.

Main characteristics

CImg is lightweight :

• What ? a library defined in a single header file ?

– Simplicity “a la STL”.
– Used template functions and structures know their type only during the

compilation phase :
⇒ No relevance in having pre-compiled objects (.cpp→.o).

– Why not several headers (one for each class) ?
⇒ Interdependence of the classes.

– Only used functions are actually compiled :
⇒ Small generated executables.

• Drawback : Compilation time and needed memory important when optimization
flags are set.

Main characteristics

CImg is (sufficiently) generic :

• CImg implements static genericity by using the C++ template mechanism.

• One template parameter only : the type of the image pixel.

Main characteristics

CImg is (sufficiently) generic :

• CImg implements static genericity by using the C++ template mechanism.

• One template parameter only : the type of the image pixel.

• CImg defines an image class that can handle hyperspectral volumetric (i.e 4D)
images of generic pixel types.

Main characteristics

CImg is (sufficiently) generic :

• CImg implements static genericity by using the C++ template mechanism.

• One template parameter only : the type of the image pixel.

• CImg defines an image class that can handle hyperspectral volumetric (i.e 4D)
images of generic pixel types.

• CImg defines an image list class that can handle temporal image sequences.

Main characteristics

CImg is (sufficiently) generic :

• CImg implements static genericity by using the C++ template mechanism.

• One template parameter only : the type of the image pixel.

• CImg defines an image class that can handle hyperspectral volumetric (i.e 4D)
images of generic pixel types.

• CImg defines an image list class that can handle temporal image sequences.

• ... But, CImg is limited to images having a rectangular grid, and cannot handle
images having more than 4 dimensions.

Main characteristics

CImg is (sufficiently) generic :

• CImg implements static genericity by using the C++ template mechanism.

• One template parameter only : the type of the image pixel.

• CImg defines an image class that can handle hyperspectral volumetric (i.e 4D)
images of generic pixel types.

• CImg defines an image list class that can handle temporal image sequences.

• ... But, CImg is limited to images having a rectangular grid, and cannot handle
images having more than 4 dimensions.

⇒ CImg covers actually 99% of the image types found in real world applications.

Main characteristics

CImg is multi-platform :

• It does not depend on many libraries.
It can be compiled only with existing system libraries.

Main characteristics

CImg is multi-platform :

• It does not depend on many libraries.
It can be compiled only with existing system libraries.

• Advanced tools or libraries may be used by CImg (ImageMagick, XMedcon, libpng,
libjpeg, libtiff, libfftw3...), these tools being freely available for any platform.

Main characteristics

CImg is multi-platform :

• It does not depend on many libraries.
It can be compiled only with existing system libraries.

• Advanced tools or libraries may be used by CImg (ImageMagick, XMedcon, libpng,
libjpeg, libtiff, libfftw3...), these tools being freely available for any platform.

• Successfully tested platforms : Win32, Linux, Solaris, *BSD, Mac OS X.

• It is also “multi-compiler” : g++, Visual Studio .NET, Intel ICL, Clang++.

Main characteristics

And most of all, CImg is very simple to use :

• Only 1 single file to include.

Main characteristics

And most of all, CImg is very simple to use :

• Only 1 single file to include.

• Only 4 C++ classes to know :

CImg<T>, CImgList<T>, CImgDisplay, CImgExeption.

Main characteristics

And most of all, CImg is very simple to use :

• Only 1 single file to include.

• Only 4 C++ classes to know :

CImg<T>, CImgList<T>, CImgDisplay, CImgExeption.

• Very basic low-level architecture, simple to apprehend (and to hack if necessary!).

Main characteristics

And most of all, CImg is very simple to use :

• Only 1 single file to include.

• Only 4 C++ classes to know :

CImg<T>, CImgList<T>, CImgDisplay, CImgExeption.

• Very basic low-level architecture, simple to apprehend (and to hack if necessary!).

• Enough genericity and library functions, allowing complex image processing tasks.

Main characteristics

And most of all, CImg is very simple to use :

• Only 1 single file to include.

• Only 4 C++ classes to know :

CImg<T>, CImgList<T>, CImgDisplay, CImgExeption.

• Very basic low-level architecture, simple to apprehend (and to hack if necessary!).

• Enough genericity and library functions, allowing complex image processing tasks.

.... and extensible :

• Simple plug-in mechanism to easily add your own functions to the library core
(without modifying the file CImg.h of course).

Hello World step by step

#inlude "CImg.h"

using namespae img_library;

int main(int arg, har **argv) {

return 0;

}

Hello World step by step

#inlude "CImg.h"

using namespae img_library;

int main(int arg, har **argv) {

CImg<unsigned har> img(300,200,1,3);

return 0;

}

Hello World step by step

#inlude "CImg.h"

using namespae img_library;

int main(int arg, har **argv) {

CImg<unsigned har> img(300,200,1,3);

img.fill(32);

return 0;

}

Hello World step by step

#inlude "CImg.h"

using namespae img_library;

int main(int arg, har **argv) {

CImg<unsigned har> img(300,200,1,3);

img.fill(32);

img.noise(128);

return 0;

}

Hello World step by step

#inlude "CImg.h"

using namespae img_library;

int main(int arg, har **argv) {

CImg<unsigned har> img(300,200,1,3);

img.fill(32);

img.noise(128);

img.blur(2,0,0);

return 0;

}

Hello World step by step

#inlude "CImg.h"

using namespae img_library;

int main(int arg, har **argv) {

CImg<unsigned har> img(300,200,1,3);

img.fill(32);

img.noise(128);

img.blur(2,0,0);

onst unsigned har white[℄ = { 255,255,255 };

img.draw_text(80,80,"Hello World",white,0,32);

return 0;

}

Hello World step by step

#inlude "CImg.h"

using namespae img_library;

int main(int arg, har **argv) {

CImg<unsigned har> img(300,200,1,3);

img.fill(32);

img.noise(128);

img.blur(2,0,0);

onst unsigned har white[℄ = { 255,255,255 };

img.draw_text(80,80,"Hello World",white,0,32);

img.display();

return 0;

}

Hello World step by step

Hello World step by step : animated

#inlude "CImg.h"

using namespae img_library;

int main(int arg, har **argv) {

onst CImg<unsigned har> img =

CImg<unsigned har>(300,200,1,3).fill(32).noise(128).blur(2,0,0).

draw_text(80,80,"Hello World",CImg<unsigned har>::vetor(255,255,255).ptr(),0,32);

CImgDisplay disp(img,"Moving Hello World",0);

for (float t=0; !disp.is_losed(); t+=0.04) {

CImg<unsigned har> res(img);

img_forYC(res,y,v)

res.get_shared_row(y,0,v).shift((int)(40*std::sin(t+y/50.0)),0,0,0,2);

disp.display(res).wait(20);

if (disp.is_resized()) disp.resize();

}
return 0;

}

Another example : Computing gradient norm of a 3D volumetric image

• Let I : Ω ∈ R
3 → R, compute

∀p ∈ Ω, ‖∇I‖(p) =
√

(

∂I

∂x

)2

+

(

∂I

∂y

)2

+

(

∂I

∂z

)2

• Code :

#inlude ``CImg.h''

using namespae img_library;

int main(int arg, har **argv) {

onst CImg<float> img(``brain_irm3d.hdr'');

onst CImgList<float> grad = img.get_gradient(``xyz'');

CImg<float> norm = (grad[0℄.pow(2) + grad[1℄.pow(2) + grad[2℄.pow(2));

norm.sqrt().get_normalize(0,255).save(``brain_gradient3d.hdr'');

return 0;

}

Another example : Computing gradient norm of a 3D volumetric image

Live Demo !

• Let see what we can do with this library.

Overall Library Structure

• The whole library classes and functions are defined in the img library::

namespace.

Overall Library Structure

• The whole library classes and functions are defined in the img library::

namespace.

• The library is composed of only four C++ classes :

– CImg<T> , represents an image with pixels of type T.

Overall Library Structure

• The whole library classes and functions are defined in the img library::

namespace.

• The library is composed of only four C++ classes :

– CImg<T> , represents an image with pixels of type T.
– CImgList<T> , represents a list of images CImg<T>.

Overall Library Structure

• The whole library classes and functions are defined in the img library::

namespace.

• The library is composed of only four C++ classes :

– CImg<T> , represents an image with pixels of type T.
– CImgList<T> , represents a list of images CImg<T>.
– CImgDisplay , represents a display window.

Overall Library Structure

• The whole library classes and functions are defined in the img library::

namespace.

• The library is composed of only four C++ classes :

– CImg<T> , represents an image with pixels of type T.
– CImgList<T> , represents a list of images CImg<T>.
– CImgDisplay , represents a display window.
– CImgException , used to throw library exceptions.

Overall Library Structure

• The whole library classes and functions are defined in the img library::

namespace.

• The library is composed of only four C++ classes :

– CImg<T> , represents an image with pixels of type T.
– CImgList<T> , represents a list of images CImg<T>.
– CImgDisplay , represents a display window.
– CImgException , used to throw library exceptions.

• A sub-namespace img library::img:: defines some low-level library functions
(including some useful ones as

rand(), grand(), min<T>(), max<T>(), abs<T>(), sleep(), etc...).

Overall Library Structure

Low−level functions Image Image List

Display Window

cimg_library::

cimg:: CImg<T> CImgList<T>

CImgDisplayCImgException
Error handling

CImg methods

• All CImg classes incorporate two different kinds of methods :

– Methods which act directly on the instance object and modify it. These methods
returns a reference to the current instance, so that writting function pipelines is
possible :

CImg<>(``toto.jpg'').blur(2).mirror('y').rotate(45).save(``tutu.jpg'');

CImg methods

• All CImg classes incorporate two different kinds of methods :

– Methods which act directly on the instance object and modify it. These methods
returns a reference to the current instance, so that writting function pipelines is
possible :

CImg<>(``toto.jpg'').blur(2).mirror('y').rotate(45).save(``tutu.jpg'');

– Other methods return a modified copy of the instance. These methods start
with get_*() :

CImg<> img(``toto.jpg'');

CImg<> img2 = img.get_blur(2); // 'img' is not modified

CImg<> img3 = img.get_rotate(20).blur(3); // 'img' is not modified

CImg methods

• All CImg classes incorporate two different kinds of methods :

– Methods which act directly on the instance object and modify it. These methods
returns a reference to the current instance, so that writting function pipelines is
possible :

CImg<>(``toto.jpg'').blur(2).mirror('y').rotate(45).save(``tutu.jpg'');

– Other methods return a modified copy of the instance. These methods start
with get_*() :

CImg<> img(``toto.jpg'');

CImg<> img2 = img.get_blur(2); // 'img' is not modified

CImg<> img3 = img.get_rotate(20).blur(3); // 'img' is not modified

⇒ Almost all CImg methods are declined into these two versions .

Outline - PART I of II : CImg Library Overview

• Context : Image Processing with C++.

• Aim and targeted audience.

• Why considering The CImg Library ?

⇒ CImg<T> : A class for image manipulation.

• Image construction, data access, math operators.

• Basic image transformations.

• Drawing things on images.

• CImgList<T> : Image collection manipulation.

• Basic manipulation functions.

• CImgDisplay : Image display and user interaction.

• Displaying images in windows.

CImg<T> : Overview

• This is the main class of the CImg Library. It has a single template parameter T.

• A CImg<T> represents an image with pixels of type T (default template parameter
is T=float). Supported types are the C/C++ basic types : bool, unsigned har,

har, unsigned short, short, unsigned int, int, float, double, ...

CImg<T> : Overview

• This is the main class of the CImg Library. It has a single template parameter T.

• A CImg<T> represents an image with pixels of type T (default template parameter
is T=float). Supported types are the C/C++ basic types : bool, unsigned har,

har, unsigned short, short, unsigned int, int, float, double, ...

• An image has always 3 spatial dimensions (width, height,depth) + 1 hyperspectral
dimension (dim) : It can represent any data from a scalar 1D signal to a 3D volume
of vector-valued pixels.

CImg<T> : Overview

• This is the main class of the CImg Library. It has a single template parameter T.

• A CImg<T> represents an image with pixels of type T (default template parameter
is T=float). Supported types are the C/C++ basic types : bool, unsigned har,

har, unsigned short, short, unsigned int, int, float, double, ...

• An image has always 3 spatial dimensions (width, height,depth) + 1 hyperspectral
dimension (dim) : It can represent any data from a scalar 1D signal to a 3D volume
of vector-valued pixels.

• Image processing algorithms are methods of CImg<T> (6= STL) :

blur(), resize(), onvolve(), erode(), load(), save()....

• Method implementation aims to handle the most general case (3D volumetric
hyperspectral images).

CImg<T> : Low-level Architecture (for hackers!)

• The structure CImg<T> is defined as :

template<typename T> strut CImg {

unsigned int _width;

unsigned int _height;

unsigned int _depth;

unsigned int _dim;

bool _is_shared;

T* _data;

};

CImg<T> : Low-level Architecture (for hackers!)

• The structure CImg<T> is defined as :

template<typename T> strut CImg {

unsigned int _width;

unsigned int _height;

unsigned int _depth;

unsigned int _dim;

bool _is_shared;

T* _data;

};

• A CImg<T> image is always entirely stored in memory.

• A CImg<T> is independent : it has its own pixel buffer.

CImg<T> : Low-level Architecture (for hackers!)

• The structure CImg<T> is defined as :

template<typename T> strut CImg {

unsigned int _width;

unsigned int _height;

unsigned int _depth;

unsigned int _dim;

bool _is_shared;

T* data;

};

• A CImg<T> image is always entirely stored in memory.

• A CImg<T> is independent : it has its own pixel buffer most of the time.

• CImg member functions (destructor, constructors, operators,...) handle memory
allocation/desallocation efficiently.

CImg<T> : Memory layout (for hackers!)

template<typename T> strut CImg {

unsigned int _width;

unsigned int _height;

unsigned int _depth;

unsigned int _dim;

bool _is_shared;

T* _data;

};

• Pixel values are not stored in a typical “RGBRGBRGBRGBRGB” order.

• Pixel values are stored first along the X-axis, then the Y-axis, then the Z-axis, then
the C-axis :

R(0,0) R(1,0) ... R(W-1,0) ... R(0,1) R(1,1) ... R(W-1,1) R(0,H-1) R(1,H-1)
... R(W-1,H-1) ... G(0,0) ... G(W-1,H-1) ... B(0,0) ... B(W-1,H-1).

Outline - PART I of II : CImg Library Overview

• Context : Image Processing with C++.

• Aim and targeted audience.

• Why considering The CImg Library ?

• CImg<T> : A class for image manipulation.

⇒ Image construction, data access, math operators.

• Basic image transformations.

• Drawing things on images.

• CImgList<T> : Image collection manipulation.

• Basic manipulation functions.

• CImgDisplay : Image display and user interaction.

• Displaying images in windows.

CImg<T> : Constructors (1)

• Default constructor, constructs an empty image.

CImg<T>();

• No memory allocated in this case, images dimensions are zero.

• Useful to declare an image without allocating its pixel values.

#inlude ``CImg.h''

using namespae img_library;

int main() {

CImg<unsigned har> img_8bits;

CImg<unsigned short> img_16bits;

CImg<float> img_float;

return 0;

}

CImg<T> : Constructors (2)

• Constructs a 4D image with specified dimensions. Omitted dimensions are set
to 1 (default parameter).

CImg<T>(unsigned int, unsigned int, unsigned int, unsigned int);

#inlude ``CImg.h''

using namespae img_library;

int main() {

CImg<float> img(100,100); // 2D salar image.

CImg<unsigned har> img2(256,256,1,3); // 2D olor image.

CImg<bool> img3(128,128,128); // 3D salar image.

CImg<short> img4(64,64,32,16); // 3D hyperspetral image (16 bands).

return 0;

}

• No initialization of pixel values is performed. Can be done with :

CImg<T>(unsigned int, unsigned int, unsigned int, unsigned int, onst T&);

CImg<T> : Constructors (3)

• Create an image by reading an image from the disk (format deduced by the
filename extension).

CImg<T>(onst har *filename);

#inlude ``CImg.h''

using namespae img_library;

int main() {

CImg<unsigned har> img(``nounours.jpg'');

CImg<unsigned short> img2(``toto.png'');

CImg<float> img3(``toto.png'');

return 0;

}

• Pixel data of the file format are converted (static cast) to the specified template
parameter.

CImg<T> : In-place constructors

• CImg<T>& assign(...)

Each constructor has an in-place version with same parameters.

CImg<float> img;

img.assign(``toto.jpg'');

img.assign(256,256,1,3,0);

img.assign();

• This principle is extended to the other CImg classes.

CImgList<float> list;

list.assign(img1,img2,img3);

CImgDisplay disp;

disp.assign(list,''List display'');

CImg<T> : Access to image data informations

• Get the dimension along the X,Y,Z or C-axis (width, height, depth or channels).

int width() onst;

int W = img.width(), H = img.height(), D = img.depth(), S = img.spetrum();

CImg<T> : Access to image data informations

• Get the dimension along the X,Y,Z or C-axis (width, height, depth or channels).

int width() onst;

int W = img.width(), H = img.height(), D = img.depth(), S = img.spetrum();

• Get the pixel value at specified coordinates. Omited coordinates are set to 0.

T& operator()(unsigned int, unsigned int, unsigned int, unsigned int);

unsigned har R = img(x,y), G = img(x,y,0,1), B = img(x,y,2);

float val = volume(x,y,z,v);

img(x,y,z) = x*y;

(Out-of-bounds coordinates are not checked !)

CImg<T> : Access to image data informations

• Get the dimension along the X,Y,Z or C-axis (Width, Height, Depth or Channels).

int width() onst;

int W = img.width(), H = img.height(), D = img.depth(), S = img.spetrum();

• Get the pixel value at specified coordinates. Omited coordinates are set to 0.

T& operator()(unsigned int, unsigned int, unsigned int, unsigned int);

unsigned har R = img(x,y), G = img(x,y,0,1), B = img(x,y,2);

float val = volume(x,y,z,v);

img(x,y,z) = x*y;

(Out-of-bounds coordinates are not checked !)

• Get the pixel value at specified sub-pixel position, using bicubic interpolation. Out-
of-bounds coordinates are checked.

float ubi pix2d(float, float, unsigned int, unsigned int);

float val = img.get_ubi_pix2d(x-0.5f,y-0.5f);

CImg<T> : Copies and assignments

• Construct an image by copy. Perform static pixel type cast if needed.

template<typename t> CImg<T>(onst CImg<t>& img);

CImg<float> img_float(img_double);

CImg<T> : Copies and assignments

• Construct an image by copy. Perform static pixel type cast if needed.

template<typename t> CImg<T>(onst CImg<t>& img);

CImg<float> img_float(img_double);

• Assignement operator. Replace the instance image by a copy of img.

template<typename t> CImg<T>& operator=(onst CImg<t>& img);

CImg<float> img;

CImg<unsigned har> img2(``toto.jpg''), img3(256,256);

img = img2;

img = img3;

• Modifying a copy does not modify the original image (own pixel buffer).

CImg<T> : Math operators and functions

• Most of the usual math operators are defined : +,-,*,/,+=,-=,...

CImg<float> img(``toto.jpg''), dest;

dest =(2*img+5);

dest+=img;

CImg<T> : Math operators and functions

• Most of the usual math operators are defined : +,-,*,/,+=,-=,...

CImg<float> img(``toto.jpg''), dest;

dest =(2*img+5);

dest+=img;

• Operators always try to return images with the best datatype.

CImg<unsigned har> img(``toto.jpg'');

CImg<float> dest;

dest = img*0.1f;

img*=0.1f;

CImg<T> : Math operators and functions

• Most of the usual math operators are defined : +,-,*,/,+=,-=,...

CImg<float> img(``toto.jpg''), dest;

dest =(2*img+5);

dest+=img;

• Operators always try to return images with the best datatype.

CImg<unsigned har> img(``toto.jpg'');

CImg<float> dest;

dest = img*0.1f;

img*=0.1f;

• Usual math functions are also defined : sqrt(), os(), pow()...

img.pow(2.5);

res = img.get_pow(2.5);

res = img.get_os().pow(2.5);

CImg<T> : Matrices operations

• The * and / operators corresponds to a matrix product/division !

CImg<float> A(3,3), v(1,3);

CImg<float> res = A*v;

• Use CImg<T>::mul() and CImg<T>::div() for pointwise operators.

CImg<T> : Matrices operations

• The * and / operators corresponds to a matrix product/division !

CImg<float> A(3,3), v(1,3);

CImg<float> res = A*v;

• Use CImg<T>::mul() and CImg<T>::div() for pointwise operators.

• Usual matrix functions and transformations are available in CImg : determinant,
SVD, eigenvalue decomposition, inverse, ...

CImg<float> A(10,10), v(1,10);

onst float determinant = A.det();

CImg<float> pseudo_inv =

((A*A.get_transpose()).inverse())*A.get_transpose();

CImg<float> pseudo_inv2 = A.get_pseudoinverse();

CImg<T> : Matrices operations

• The * and / operators corresponds to a matrix product/division !

CImg<float> A(3,3), v(1,3);

CImg<float> res = A*v;

• Use CImg<T>::mul() and CImg<T>::div() for pointwise operators.

• Usual matrix functions and transformations are available in CImg : determinant,
SVD, eigenvalue decomposition, inverse, ...

CImg<float> A(10,10), v(1,10);

onst float determinant = A.det();

CImg<float> pseudo_inv =

((A*A.get_transpose()).inverse())*A.get_transpose();

CImg<float> pseudo_inv2 = A.get_pseudoinverse();

• Warning : Matrices are viewed as images, so first indice is the column
number, second is the line number : Aij = A(j,i)

CImg<T> : Image destruction

• Image destruction is done in the �CImg() method.

• Used pixel buffer memory (if any) is automatically freed by the destructor.

• Destructor is automatically called at the end of a block.

• Memory deallocation can be forced by the assign() function.

CImg<float> img(10000,10000); // Need 4*10000^2 bytes = 380 Mo

float det = img.det();

// We won't use img anymore...

img.assign();

// Equivalent to :

img = CImg<float>();

Outline - PART I of II : CImg Library Overview

• Context : Image Processing with C++.

• Aim and targeted audience.

• Why considering The CImg Library ?

• CImg<T> : A class for image manipulation.

• Image construction, data access, math operators.

⇒ Basic image transformations.

• Drawing things on images.

• CImgList<T> : Image collection manipulation.

• Basic manipulation functions.

• CImgDisplay : Image display and user interaction.

• Displaying images in windows.

CImg<T> : Image manipulation

• fill() : Fill an image with one or several values.

CImg<> img(256,256), vetor(1,6);

img.fill(0);

vetor.fill(1,2,3,4,5,6);

• Apply basic global transformations on pixel values.

normalize(), ut(), quantize(), threshold().

CImg<float>

img(�toto.jpg�);

img.quantize(16);

img.normalize(0,1);

img.ut(0.2f,0.8f);

img.threshold(0.5f);

img.normalize(0,255);

CImg<T> : Image manipulation

• rotate() : Rotate an image with a given angle.

CImg<> img(``milla.png'');

img.rotate(30);

• resize() : Resize an image with a given size.

CImg<> img(``mini.jpg'');

img.resize(-300,-300); // -300 = 300%

⇒ Border conditions and interpolation types can be chosen by the user.

CImg<T> : Image manipulation

• get rop() : Get a sub−image of the instance image.

CImg<> img(256,256);

img.get_rop(0,0,128,128); // Get the upper-left half image

• Color space-conversions : RGBtoYUV(), RGBtoLUT(), RGBtoHSV(),... and
inverse transformations.

• Filtering : blur(), onvolve(), erode(), dilate(), FFT(), derihe(),....

• In the reference documentation, functions are grouped by themes....

http://img.soureforge.net/referene/

CImg<T> : Image manipulation

#inlude ``CImg.h''

using namespae img_library;

int main() {

CImg<unsigned har> img(``milla.jpg'');

img.blur(1).rop(15,52,150,188).dilate(10).mirror('x');

img.save(``result.png'');

return 0;

}

Outline - PART I of II : CImg Library Overview

• Context : Image Processing with C++.

• Aim and targeted audience.

• Why considering The CImg Library ?

• CImg<T> : A class for image manipulation.

• Image construction, data access, math operators.

• Basic image transformations.

⇒ Drawing things on images.

• CImgList<T> : Image collection manipulation.

• Basic manipulation functions.

• CImgDisplay : Image display and user interaction.

• Displaying images in windows.

CImg<T> : Drawing functions

• CImg proposes a lot of functions to draw features in images.

⇒ Points, lines, circles, rectangles, triangles, text, vector fields, 3D objects, ...

• All drawing function names begin with draw *().

• Features are drawn directly on the instance image (so there are not onst).

CImg<T> : Drawing functions

• All drawing functions work the same way : They need the instance image, feature
coordinates, and a color (eventual other optional parameters can be set).

CImg<T> : Drawing functions

• All drawing functions work the same way : They need the instance image, feature
coordinates, and a color (eventual other optional parameters can be set).

• They return a reference to the instance image, so they can be pipelined.

CImg<T> : Drawing functions

• All drawing functions work the same way : They need the instance image, feature
coordinates, and a color (eventual other optional parameters can be set).

• They return a reference to the instance image, so they can be pipelined.

• They clip objects that are out of image bounds.

CImg<T> : Drawing functions

• All drawing functions work the same way : They need the instance image, feature
coordinates, and a color (eventual other optional parameters can be set).

• They return a reference to the instance image, so they can be pipelined.

• They clip objects that are out of image bounds.

• Ex : CImg& draw line(int,int,int,int,T*);

CImg<unsigned short> img(256,256,1,5); // hyperspetral image of ushort

unsigned short olor[5℄ = { 0,8,16,24,32 }; // olor used for the drawing

img.draw_line(x-2,y-2,x+2,y+2,olor).

draw_line(x-2,y+2,x+2,y-2,olor).

draw_irle(x+10,y+10,5,olor);

CImg<T> : Drawing functions

• All drawing functions work the same way : They need the instance image, feature
coordinates, and a color (eventual other optional parameters can be set).

• They return a reference to the instance image, so they can be pipelined.

• They clip objects that are out of image bounds.

• Ex : CImg& draw line(int,int,int,int,T*);

CImg<unsigned short> img(256,256,1,5); // hyperspetral image of ushort

unsigned short olor[5℄ = { 0,8,16,24,32 }; // olor used for the drawing

img.draw_line(x-2,y-2,x+2,y+2,olor).

draw_line(x-2,y+2,x+2,y-2,olor).

draw_irle(x+10,y+10,5,olor);

• CImg<T>::draw objet3d() can draw 3D objects (mini Open-GL!)

CImg<T> : Plasma ball (source code)

• The following code draws a “plasma ball” from scratch :

CImg<unsigned har> img(512,512,1,3,0);

for (float alpha=0, beta=0; beta<100; alpha+=0.21f, beta+=0.18f) {

onst float

a = std::os(alpha), b = std::os(beta),

sa = std::sin(alpha), sb = std::sin(beta);

img.draw_line(256+200*a*sa,256+200*b*sa,

256+200*sa*sb,256+200*sb*a,

CImg<unsigned har>::vetor(alpha*256,beta*256,128).

ptr(),0.5f);

}
onst unsigned har white[3℄ = { 255,255,255 }, blue[3℄ = { 16,32,128 };

img.draw_irle(256,256,200,white,1.0f,~0U).draw_fill(0,0,blue);

for (int radius = 60; radius>0; --radius)

img.draw_irle(340,172,radius,white,0.02f);

CImg<T> : Plasma ball (result)

Outline - PART I of II : CImg Library Overview

• Context : Image Processing with C++.

• Aim and targeted audience.

• Why considering The CImg Library ?

• CImg<T> : A class for image manipulation.

• Image construction, data access, math operators.

• Basic image transformations.

• Drawing things on images.

⇒ CImgList<T> : Image collection manipulation.

• Basic manipulation functions.

• CImgDisplay : Image display and user interaction.

• Displaying images in windows.

CImgList<T> : Overview

• A CImgList<T> represents an array of CImg<T>.

• Useful to handle a sequence or a collection of images.

• Here also, the memory is not shared by other CImgList<T> or CImg<T> objects.

• Looks like a std::vetor<CImg<T> >, specialized for image processing.

• Can be used as a flexible and ordered set of images.

Outline - PART I of II : CImg Library Overview

• Context : Image Processing with C++.

• Aim and targeted audience.

• Why considering The CImg Library ?

• CImg<T> : A class for image manipulation.

• Image construction, data access, math operators.

• Basic image transformations.

• Drawing things on images.

• CImgList<T> : Image collection manipulation.

⇒ Basic manipulation functions.

• CImgDisplay : Image display and user interaction.

• Displaying images in windows.

CImgList<T> : Main functions

// Create a list of 20 olor images 100x100.

CImgList<float> list(20,100,100,1,3);

// Insert two images at the end of the list.

list.insert(CImg<float>(50,50));

list.insert(CImg<unsigned har>(``milla.ppm''));

// Remove the seond image from the list.

list.remove(1);

// Resize the 5th image of the list.

CImg<float> &ref = list[4℄;

ref.resize(50,50);

• Lists can be saved (and loaded) as .cimg files (simple binary format with ascii
header).

CImgList<T> : .img files

• Functions CImgList<T>::load img() and CImgList<T>::save img() allow to
load/save portions of .img image files.

• Single images (CImg<T> lass) can be also loaded/saved into .img files.

• Useful to work with big image files, video sequences or image collections.

Outline - PART I of II : CImg Library Overview

• Context : Image Processing with C++.

• Aim and targeted audience.

• Why considering The CImg Library ?

• CImg<T> : A class for image manipulation.

• Image construction, data access, math operators.

• Basic image transformations.

• Drawing things on images.

• CImgList<T> : Image collection manipulation.

• Basic manipulation functions.

⇒ CImgDisplay : Image display and user interaction.

• Displaying images in windows.

Outline - PART I of II : CImg Library Overview

• Context : Image Processing with C++.

• Aim and targeted audience.

• Why considering The CImg Library ?

• CImg<T> : A class for image manipulation.

• Image construction, data access, math operators.

• Basic image transformations.

• Drawing things on images.

• CImgList<T> : Image collection manipulation.

• Basic manipulation functions.

• CImgDisplay : Image display and user interaction.

⇒ Displaying images in windows.

CImgDisplay : Overview

• A CImgDisplay allows to display CImg<T> or CImgl<T> instances in a window, and
can handle user events that may happen in this window (mouse, keyboard, ...)

CImgDisplay : Overview

• A CImgDisplay allows to display CImg<T> or CImgl<T> instances in a window, and
can handle user events that may happen in this window (mouse, keyboard, ...)

• The construction of a CImgDisplay opens a window.

CImgDisplay : Overview

• A CImgDisplay allows to display CImg<T> or CImgl<T> instances in a window, and
can handle user events that may happen in this window (mouse, keyboard, ...)

• The construction of a CImgDisplay opens a window.

• The destruction of a CImgDisplay closes the corresponding window.

CImgDisplay : Overview

• A CImgDisplay allows to display CImg<T> or CImgl<T> instances in a window, and
can handle user events that may happen in this window (mouse, keyboard, ...)

• The construction of a CImgDisplay opens a window.

• The destruction of a CImgDisplay closes the corresponding window.

• The display of an image in a CImgDisplay is done by a call to the

CImgDisplay::display() function.

CImgDisplay : Overview

• A CImgDisplay allows to display CImg<T> or CImgl<T> instances in a window, and
can handle user events that may happen in this window (mouse, keyboard, ...)

• The construction of a CImgDisplay opens a window.

• The destruction of a CImgDisplay closes the corresponding window.

• The display of an image in a CImgDisplay is done by a call to the

CImgDisplay::display() function.

• A CImgDisplay has its own pixel buffer. It does not store any references to the

CImg<T> or CImgList<T> passed at the last call to CImgDisplay::display().

CImgDisplay : Handling events

• When opening the window, an event-handling thread is created.

• This thread automatically updates volatile fields of the CImgDisplay instance,
when events occur in the corresponding window :

– Mouse events : mouse x(), mouse y() and button().
– Keyboard event : key().
– Window events : is resized(), is losed() and is moved().

• Only one thread is used to handle display events of all opened CImgDisplay.

• This thread is killed when the last display window is destroyed.

• The CImgDisplay class is fully coded both for GDI32 and X11 graphics libraries.

• Display automatically handles image normalization to display float-valued images
correctly.

CImgDisplay : Useful functions

• Construction :

CImgDisplay disp1(img,``My first display'');

CImgDisplay disp2(640,400,''My seond display'');

• Display/Refresh image:

img.display(disp);

disp.display(img);

• Handle events :

if (disp.key()==img::keyQ) { ... }

if (disp.is_resized()) disp.resize();

if (disp.mouse_x()>20 && disp.mouse_y()<40) { ... }

disp.wait();

• Temporize (for animations) : disp.wait(20);

CImgDisplay : Example of using CImgDisplay

#inlude "CImg.h"

using namespae img_library;

int main() {

CImgDisplay disp(256,256,"My Display");

while (!disp.is_losed()) {

if (disp.button&1) {

onst int x = disp.mouse_x(), y = disp.mouse_y();

CImg<unsigned har> img(disp.width(),disp.height());

unsigned har ol[1℄ = {255};

img.fill(0).draw_irle(x,y,40,ol).display(disp);

}
if (disp.button()&2) disp.resize(-90,-90);

if (disp.is_resized()) disp.resize();

disp.wait();

}
return 0;

}

A more complete example of using CImg<T> (14 C++ lines)

CImg<> img = CImg<>("img/milla.ppm").normalize(0,1);

CImgl<unsigned har> visu(img*255, CImg<unsigned har>(512,300,1,3,0));

onst unsigned har yellow[3℄ = {255,255,0}, blue[3℄={0,155,255}, blue2[3℄={0,0,255}, blue3[3℄={0,0,155},

white[3℄={255,255,255};

CImgDisplay disp(visu,"Image and Histogram (Mouse lik to set the Gamma orretion)",0);

for (double gamma=1;!disp.losed() && disp.key()!=img::keyQ && disp.key()!=img::keyESC;) {

img_forXYZC(visu[0℄,x,y,z,k) visu[0℄(x,y,z,k) = (unsigned har)(pow((double)img(x,y,z,k),1.0/gamma)*256);

onst CImg<> hist = visu[0℄.get_histogram(50,0,255);

visu[1℄.fill(0).draw_text(50,5,"Gamma = %g",white,NULL,1,gamma).

draw_graph(hist,yellow,1,20000,0).draw_graph(hist,white,2,20000,0);

onst int xb = (int)(50+gamma*150);

visu[1℄.draw_retangle(51,21,xb-1,29,blue2).draw_retangle(50,20,xb,20,blue).draw_retangle(xb,20,xb,30,blue);

visu[1℄.draw_retangle(xb,30,50,29,blue3).draw_retangle(50,20,51,30,blue3);

if (disp.button() && disp.mouse_x()>=img.width()+50 && disp.mouse_x()<=img.width()+450) gamma = (disp.mouse_x()-img.width()-50)/150.0;

disp.resize(disp).display(visu).wait();

}

Result :
Histogram manipulation and gamma
correction (example from example file

CImg demo.pp)

PART II of II

Outline - PART II of II : More insights

⇒ Image Filtering : Goal and principle.

• Convolution - Correlation.

• Morphomaths - Median Filter.

• Anisotropic smoothing.

• Other related functions.

• Image Loops : Using predefined macros.

• Simple loops.

• Neighborhood loops.

• The plug-in mechanism.

• Dealing with 3D objects.

• Shared images.

Context : Image Filtering

• Image filtering is one of the most common operations done on images in order to
retrieve informations.

Context : Image Filtering

• Image filtering is one of the most common operations done on images in order to
retrieve informations.

• Filtering is needed in the following cases :

– Compute image derivatives (gradient) ∇I =
(

∂I
∂x

∂I
∂x

)T
.

– Noise removal : Gaussian or Median filtering.
– Edge enhancement & Deconvolution : Sharpen masks, Fourier Transform.
– Shape analysis : Morphomath filters (erosion, dilatation,..)
– ...

Context : Image Filtering

• Image filtering is one of the most common operations done on images in order to
retrieve informations.

• Filtering is needed in the following cases :

– Compute image derivatives (gradient) ∇I =
(

∂I
∂x

∂I
∂x

)T
.

– Noise removal : Gaussian or Median filtering.
– Edge enhancement & Deconvolution : Sharpen masks, Fourier Transform.
– Shape analysis : Morphomath filters (erosion, dilatation,..)
– ...

• A filtering process generally needs the image and a mask (a.k.a kernel or
structuring element).

How filtering works ?

• For each point p ∈ Ω of the image I , consider its neighborhood NI(p) and combine
it with a user-defined mask M .

•

−2 3 . . . 7 1

1 −3
...
−4 6

1 −2 . . . 8 −5

• Neighborhood NI(p) and mask M have the same size.

• The operator • may be linear, but not necessarily.

• The result of the filtering operation is the new value at p :

∀p ∈ Ω, J(p) = NI(p) •M

Filtering examples

(a) Original image (b) Derivative along x (c) Erosion

• Derivative obtained with • = ∗ and M = [0.5 0 − 0.5]

• Erosion obtained with • = min().

Outline - PART II of II : More insights

• Image Filtering : Goal and principle.

⇒ Convolution - Correlation.

• Morphomaths - Median Filter.

• Anisotropic smoothing.

• Other related functions.

• Image Loops : Using predefined macros.

• Simple loops.

• Neighborhood loops.

• The plug-in mechanism.

• Dealing with 3D objects.

• Shared images.

Linear filtering

• Convolution and Correlation implements linear filtering (• = ∗)

Convolution : J(x, y) =
∑

i

∑

j

I(x− i, y − j) M(i, j)

Correlation : J(x, y) =
∑

i

∑

j

I(x+ i, y + j) M(i, j)

• CImg<T>::get_onvolve(), CImg<T>::onvolve() and

CImg<T>::get_orrelate(), CImg<T>::orrelate().

• Compute image derivative along the X-axis :

CImg<> img(``toto.jpg'');

CImg<> mask = CImg<>(3,1).fill(0.5,0,-0.5);

img.onvolve(mask);

Linear filtering (2)

• You can set the border condition in onvolve() and orrelate()

• Common linear filters are already implemented :

– Gaussian kernel for image smoothing :

CImg<T>::get blur() and CImg<T>::blur().
– Image derivatives :

CImg<T>::get gradient("xy") and CImg<T>::get gradient("xyz").

⇒ Faster versions than using the CImg<T>::onvolve() function !

Blur an image with a Gaussian kernel with σ = 10.

Using CImg<T>::onvolve() : 1129 ms.

Using CImg<T>::blur() : 7 ms.

Linear filtering (3)

• When mask size is big, you can efficiently convolve the image by a multiplication
in the Fourier domain.

• CImg<T>::get FFT() returns a CImgList<T> with the real and imaginary part of the
FT.

• CImg<T>::get FFT(true) returns a CImgList<T> with the real and imaginary part
of the inverse FT.

Outline - PART II of II : More insights

• Image Filtering : Goal and principle.

• Convolution - Correlation.

⇒ Morphomaths - Median Filter.

• Anisotropic smoothing.

• Other related functions.

• Image Loops : Using predefined macros.

• Simple loops.

• Neighborhood loops.

• The plug-in mechanism.

• Dealing with 3D objects.

• Shared images.

Morphomaths

• Nonlinear filters.

• Erosion : Keep the mininum value in the image neighborhood having the same
shape than the structuring element mask.

CImg<T>::erode() and CImg<T>::get erode().

• Dilatation : Keep the maximum value in the image neighborhood having the same
shape than the structuring element mask.

CImg<T>::dilate() and CImg<T>::get dilate().

(a) Original image (b) Erosion by a 10 × 10 kernel (b) Dilatation by a 10 × 10 kernel

Morphomaths (2)

• Opening : Erode, then dilate :

img.erode(10).dilate(10);

• Closing : Dilate, then erode :

img.dilate(10).erode(10);.

(a) Original image (b) Opening by a 10 × 10 kernel (b) Closing by a 10 × 10 kernel

Median filtering

• Nonlinear filter : Keep the median value in the image neighborhood having the
same shape than the mask.

• Functions CImg<T>::get blur median() and CImg<T>::blur median().

• Near optimal to remove Salt&Pepper noise.

Outline - PART II of II : More insights

• Image Filtering : Goal and principle.

• Convolution - Correlation.

• Morphomaths - Median Filter.

⇒ Anisotropic smoothing.

• Other related functions.

• Image Loops : Using predefined macros.

• Simple loops.

• Neighborhood loops.

• The plug-in mechanism.

• Dealing with 3D objects.

• Shared images.

Anisotropic smoothing

• Non-linear edge-directed diffusion, very optimized PDE-based algorithm.

• Very efficient in removing Gaussian noise, or other additive noise.

• Able to work on 2D and 3D images.

• Function CImg<T>::blur anisotropi().

• A lot of applications : Image denoising, reconstruction, resizing.

Anisotropic smoothing

• CImg<T>::blur anisotropi() implements the following diffusion PDE :

∀i = 1, . . . , n,
∂Ii

∂t
= trace(THi) +

2

π
∇ITi

∫ π

α=0

J√
Taα

√
Taα dα

where Jw =

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

and Hi =

∂2Ii
∂x2

∂2Ii
∂x∂y

∂2Ii
∂x∂y

∂2Ii
∂y2

.

• Image smoothing while preserving discontinuities (edges).

• One of the advanced filtering tool in the CImg Library.

Application of CImg<T>::blur anisotropi()

“Babouin” (détail) - 512x512 - (1 iter., 19s)

Application of CImg<T>::blur anisotropi()

“Tunisie” - 555x367

Application of CImg<T>::blur anisotropi()

“Tunisie” - 555x367 - (1 iter., 11s)

Application of CImg<T>::blur anisotropi()

“Tunisie” - 555x367 - (1 iter., 11s)

Application of CImg<T>::blur anisotropi()

“Bébé” - 400x375

Application of CImg<T>::blur anisotropi()

“Bébé” - 400x375 - (2 iter, 5.8s)

Application of CImg<T>::blur anisotropi()

“Bébé” - 400x375 - (2 iter, 5.8s)

Application of CImg<T>::blur anisotropi()

“Van Gogh”

Application of CImg<T>::blur anisotropi()

“Van Gogh” - (1 iter, 5.122s).

Application of CImg<T>::blur anisotropi()

“Fleurs” (JPEG, 10% quality).

Application of CImg<T>::blur anisotropi()

“Corail” (1 iter.)

Application : Image Inpainting

“Bird”, original color image.

Application : Image Inpainting

“Bird”, inpainting mask definition.

Application : Image Inpainting

“Bird”, inpainted with our PDE.

Application : Image Inpainting

“Chloé au zoo”, original color image.

Application : Image Inpainting

“Chloé au zoo”, inpainting mask definition.

Application : Image Inpainting

“Chloé au zoo”, inpainted with our PDE.

Application : Image Inpainting and Reconstruction

“Parrot”

500x500

(200 iter.,

4m11s)

“Owl”

320x246

(10 iter., 1m01s)

Application : Image Resizing

(c) Details from the image resized by bicubic interpolation.

(d) Details from the image resized by a non-linear regularization PDE.

Application : Image Resizing

(a) Original

color image

(b) Bloc Interpolation (c) Linear Interpolation (d) Bicubic Interpolation (e) PDE/LIC Interpolation

Outline - PART II of II : More insights

• Image Filtering : Goal and principle.

• Convolution - Correlation.

• Morphomaths - Median Filter.

• Anisotropic smoothing.

⇒ Other related functions.

• Image Loops : Using predefined macros.

• Simple loops.

• Neighborhood loops.

• The plug-in mechanism.

• Dealing with 3D objects.

• Shared images.

Adding noise to images

• CImg<T>::noise() and CImg<T>::get noise().

• Can add different kind of noise to the image with specified distribution : Uniform,
Gaussian, Poisson, Salt&Pepper.

• One parameter that set the amount of noise added.

Retrieving image similarity

• Two indices defined to measure “distance” between two images I1 and I2 : MSE
and PSNR.

• MSE, Mean Squared Error : CImg<T>::MSE(img1,img2).

MSE(I1, I2) =

∑

p∈Ω(I1(p) − I2(p))
2

card(Ω)

The lowest the MSE is, the closest the images I1 and I2 are.

• PSNR, Peak Signal to Noise Ratio : CImg<T>::PSNR(img1,img2).

PSNR(I1, I2) = 20 log10

(

M
√

MSE(I1, I2)

)

where M is the maximum value of I1 and I2.

Filtering in CImg : Conclusions

• A lot of useful functions that does the common image filtering tasks.

• Linear and Nonlinear filters.

• But what if we want to define to following filter ???

∀p ∈ Ω, J(x, y) =
∑

i,j

mod(I(x− i, y − j),M(i, j))

⇒ There are smart ways to define your own nonlinear filters, using neighborhood
loops.

Outline - PART II of II : More insights

• Image Filtering : Goal and principle.

• Convolution - Correlation.

• Morphomaths - Median Filter.

• Anisotropic smoothing.

• Other related functions.

⇒ Image Loops : Using predefined macros.

• Simple loops.

• Neighborhood loops.

• The plug-in mechanism.

• Dealing with 3D objects.

• Shared images.

Outline - PART II of II : More insights

• Image Filtering : Goal and principle.

• Convolution - Correlation.

• Morphomaths - Median Filter.

• Anisotropic smoothing.

• Other related functions.

• Image Loops : Using predefined macros.

⇒ Simple loops.

• Neighborhood loops.

• The plug-in mechanism.

• Dealing with 3D objects.

• Shared images.

Simple loops

• Image loops are very useful in image processing, to scan pixel values iteratively.

• CImg define macros that replace the corresponding for(..;..;..) instructions.

img_forX(img,x) ⇔ for (int x=0; x<img.width(); x++)

img_forY(img,y) ⇔ for (int y=0; y<img.height(); y++)

img_forZ(img,z) ⇔ for (int z=0; z<img.depth(); z++)

img_forC(img,) ⇔ for (int =0; <img.spetrum(); ++)

Simple loops

• Image loops are very useful in image processing, to scan pixel values iteratively.

• CImg define macros that replace the corresponding for(..;..;..) instructions.

img_forX(img,x) ⇔ for (int x=0; x<img.width(); x++)

img_forY(img,y) ⇔ for (int y=0; y<img.height(); y++)

img_forZ(img,z) ⇔ for (int z=0; z<img.depth(); z++)

img_forC(img,) ⇔ for (int =0; <img.spetrum(); ++)

• CImg also defines :

img_forXY(img,x,y) ⇔ img_forY(img,y) img_forX(img,x)

img_forXYZ(img,x,y,z) ⇔ img_forZ(img,z) img_forXY(img,x,y)

img_forXYZC(img,x,y,z,) ⇔ img_forC(img,) img_forXYZ(img,x,y,z)

Simple loops (2)

• These loops lead to natural code for filling an image with values :

CImg<unsigned har> img(256,256);

img_forXY(img,x,y) { img(x,y) = (x*y)%256; }

Simple loops (2)

• These loops lead to natural code for filling an image with values :

CImg<unsigned har> img(256,256);

img_forXY(img,x,y) { img(x,y) = (x*y)%256; }

Interior and Border loops

• Slight variants of the previous loops, allowing to consider only interior or image
borders.

• An extra parameter n telling about the size of the image border.

img for insideXY(img,x,y,n) and img for borderXY(img,x,y,n) (same for 3D
volumetric images).

CImg<unsigned har> img(256,256);

img for insideXY(img,x,y,64) img(x,y) = x+y;

img for borderXY(img,x,y,64) img(x,y) = x-y;

Outline - PART II of II : More insights

• Image Filtering : Goal and principle.

• Convolution - Correlation.

• Morphomaths - Median Filter.

• Anisotropic smoothing.

• Other related functions.

• Image Loops : Using predefined macros.

• Simple loops.

⇒ Neighborhood loops.

• The plug-in mechanism.

• Dealing with 3D objects.

• Shared images.

Neighborhood-based loops

• Very powerful loops, allow to loop an entire neighborhood over an image.

• From 2× 2 to 5× 5 for 2D neighborhood.

• From 2× 2× 2 to 3× 3× 3 for 3D neighborhood.

• Border condition : Nearest-neighbor.

• Need an external neighborhood variable declaration.

• Allow to write very small, clear and optimized code.

Neighborhood-based loops : 3× 3 example

• Neighborhood declaration :

CImg_3x3(I,float).

Neighborhood-based loops : 3× 3 example

• Neighborhood declaration :

CImg_3x3(I,float).

• Actually, the line above defines 9 different variables, named :

Ipp Ip Inp

Ip I In

Ipn In Inn

where p = previous, c = current, n = next.

Neighborhood-based loops : 3× 3 example

• Neighborhood declaration :

CImg_3x3(I,float).

• Actually, the line above defines 9 different variables, named :

Ipp Ip Inp

Ip I In

Ipn In Inn

where p = previous, c = current, n = next.

• Using a img_for3x3() automatically updates the neighborhood with the correct
values.

img_for3x3(img,x,y,0,0,I,float) {

.. Here, Ipp, Ip, ... In, Inn are updated ...

}

Neighborhood-based loops

• Example of use : Compute the gradient norm with one loop.

CImg<float> img(``milla.jpg''), dest(img);

CImg_3x3(I,float);

img_forC(img,v) img_for3x3(img,x,y,0,v,I,float) {

onst float ix = (In-Ip)/2, iy = (In-Ip)/2;

dest(x,y) = std::sqrt(ix*ix+iy*iy);

}

Example : Modulo Filtering

• What if we want to define to following filter ???

∀p ∈ Ω, J(x, y) =
∑

i,j

mod(I(x− i, y − j),M(i, j))

Example : Modulo Filtering

• What if we want to define to following filter ???

∀p ∈ Ω, J(x, y) =
∑

i,j

mod(I(x− i, y − j),M(i, j))

• Simple solution, using a 3x3 mask :

CImg<unsigned har> img(``milla.jpg''), mask(3,3);

CImg<> dest(img);

CImg_3x3(I,float);

img_forV(img,v) img_for3x3(img,x,y,0,v,I)

dest(x,y) = mask(0,0)%Ipp + mask(1,0)%Ip + mask(2,0)%Inp

+ mask(0,1)%Ip + mask(1,1)%I + mask(2,1)%In

+ mask(0,2)%Ipn + mask(1,2)%In + mask(2,2)%Inn;

}

Outline - PART II of II : More insights

• Image Filtering : Goal and principle.

• Convolution - Correlation.

• Morphomaths - Median Filter.

• Anisotropic smoothing.

• Other related functions.

• Image Loops : Using predefined macros.

• Simple loops.

• Neighborhood loops.

⇒ The plug-in mechanism.

• Dealing with 3D objects.

• Shared images.

CImg plugins

• Sometimes an user needs or defines specific functions, either very specialized or
not generic enough.

• Not suitable to be integrated in the CImg Library, but interesting to share anyway.

CImg plugins

• Sometimes an user needs or defines specific functions, either very specialized or
not generic enough.

• Not suitable to be integrated in the CImg Library, but interesting to share anyway.

⇒ Integration possible in CImg via the plug-ins mechanism.

#define img_plugin ``my_plugin.h''

#inlude ``CImg.h''

using namespae img_library;

int main() {

CImg<> img(``milla.jpg'');

img.my_wonderful_funtion();

return 0;

}

CImg plugins

• Plugin functions are directly added as member functions of the CImg class.

// File ``my_plugin.h''

//---------------------

CImg<T> my_wonderful_funtion() {

(*this)=(T)3.14f;

return *this;

}

CImg plugins

• Plugin functions are directly added as member functions of the CImg class.

// File ``my_plugin.h''

//---------------------

CImg<T> my_wonderful_funtion() {

(*this)=(T)3.14f;

return *this;

}

• Very flexible system, implemented as easily as :

lass CImg<T> {

...

#ifdef img_plugin

#inlude img_plugin

#endif

};

CImg plugins

• Advantages :

– Allow creations or modifications of existing functions by the user, without
modifying the library source code.

CImg plugins

• Advantages :

– Allow creations or modifications of existing functions by the user, without
modifying the library source code.

– Allow to specialize the library according to the user’s work.

CImg plugins

• Advantages :

– Allow creations or modifications of existing functions by the user, without
modifying the library source code.

– Allow to specialize the library according to the user’s work.
– Allow an easy redistribution of useful functions as open source components.
⇒ A very good way to contribute to the library.

CImg plugins

• Advantages :

– Allow creations or modifications of existing functions by the user, without
modifying the library source code.

– Allow to specialize the library according to the user’s work.
– Allow an easy redistribution of useful functions as open source components.
⇒ A very good way to contribute to the library.

• Existing plugins in the default CImg package :

– Located in the directory CImg/plugins/

– img_matlab.h : Provide code interface between CImg and Matlab images.
– nlmeans.h : Implementation of Non-Local Mean Filter (Buades etal).
– noise_analysis.h : Advanced statistics for noise estimation.
– toolbox3d.h : Functions to construct classical 3D meshes (cubes, sphere,...)

CImg plugins

• Plug-ins variables :

– #define img_plugin : Add functions to the CImg<T> class.
– #define imglist_plugin : Add functions to the CImgList<T> class.

• Using several plug-ins is possible : #define img_plugin ``all_plugins.h''.

// file ``all_plugins.h''

#inlude ``plugin1.h''

#inlude ``plugin2.h''

#inlude ``plugin3.h''

⇒ With the plugin mechanism, CImg is a very open framework for image processing.

Outline - PART II of II : More insights

• Image Filtering : Goal and principle.

• Convolution - Correlation.

• Morphomaths - Median Filter.

• Anisotropic smoothing.

• Other related functions.

• Image Loops : Using predefined macros.

• Simple loops.

• Neighborhood loops.

• The plug-in mechanism.

⇒ Dealing with 3D objects.

• Shared images.

3D Object Visualization : Context

• In a lot of image processing problems, one needs to reconstruct 3D models from
raw image datasets.

– 3D from stereo images/multiple cameras.
– 3D surface reconstruction from volumetric MRI images.
– 3D surface reconstruction from points clouds (3D scanner).

3D Object Visualization : Context

⇒ Basic and intergrated 3D meshes visualization capabilities may be useful in any
image processing library.

• ... but we don’t want to replace complete 3D rendering libraries (openGL,
Direct3D, VTK, ...).

• CImg allows to visualize 3D objects for punctuals needs.

– Can displays a set of 3D primitives (points, lines, triangles) with given opacity.
– Can render objects with flat, gouraud or phong-like light models.
– Contains an interactive display function to view the 3D object.
– Texture mapping supported.
– No multiple lights allowed.
– No GPU acceleration.

3D Object Visualization : Live Demo

• Mean Curvature Flow.

• Image as a surface.

• Toolbox3D.

3D Object Visualization : How does it works ?

• CImg has a CImg<T>::draw_*() function that can draw a projection of a 3D object
into a 2D image :

CImg<T>::draw objet3d()

3D Object Visualization : How does it works ?

• CImg has a CImg<T>::draw_*() function that can draw a projection of a 3D object
into a 2D image :

CImg<T>::draw objet3d()

• High-level interactive 3D object display :

CImg<T>::display objet3d()

⇒ All 3D visualization capabilities of CImg are based on these two functions.

3D Object Visualization : How does it works ?

• CImg has a CImg<T>::draw_*() function that can draw a projection of a 3D object
into a 2D image :

CImg<T>::draw objet3d()

• High-level interactive 3D object display :

CImg<T>::display objet3d()

⇒ All 3D visualization capabilities of CImg are based on these two functions.

• Needed parameters :

– A CImgList<tp> of 3D points coordinates (size M).
– A CImgList<tf> of primitives (size N).
– A CImgList<T> of colors/textures (size N).
– A CImgList<to> of opacities (size N) (optional parameter).

Display a house : building point list

CImgList<float> points(9,1,3,1,1,

-50,-50,-50, // Point 0

50,-50,-50, // Point 1

50,50,-50, // Point 2

-50,50,-50, // Point 3

-50,-50,50, // Point 4

50,-50,50, // Point 5

50,50,50, // Point 6

-50,50,50, // Point 7

0,-100,0); // Point 8

⇒ List of 9 vectors (images 1x3) with specified coordinates.

Display a house : building primitives list

CImgList<unsigned int> primitives(6,1,4,1,1,

0,1,5,4, // Fae 0

3,7,6,2, // Fae 1

1,2,6,5, // Fae 2

0,4,7,3, // Fae 3

0,3,2,1, // Fae 4

4,5,6,7); // Fae 5

primitives.insert(CImgList<unsigned int>(4,1,2,1,1,

0,8, // Segment 6

1,8, // Segment 7

5,8, // Segment 8

4,8)); // Segment 9

⇒ List of 10 vectors : 6 rectangle + 4 segments.

Display a house : building colors

CImgList<unsigned har> olors;

olors.insert(6,CImg<unsigned har>::vetor(255,0,255));

olors.insert(4,CImg<unsigned har>::vetor(255,255,255));

• Then,.... visualize.

CImg<unsigned har>(800,600,1,3).fill(0).

display_objet3d(points,primitives,olors);

Display a transparent house : setting primitive opacities

CImgList<float> opaities;

opaities.insert(6,CImg<>::vetor(0.5f));

opaities.insert(4,CImg<>::vetor(1.0f));

• Then,.... visualize.

CImg<unsigned har>(800,600,1,3).fill(0).

display_objet3d(points,primitives,olors,opaities);

• Other parameters of the 3D functions allow to set :

• Light position, and ambiant light intensity.
• Camera position and focale.
• Rendering type (Gouraud, Flat, ...)
• Double/Single faces.

How to construct 3D meshes ?

• Plugin : CImg/plugins/primitives.h contains useful functions to retrieve classical
meshes.

CImg<T>::ube(), CImg<T>::sphere(), CImg<T>::ylinder(), ...

• Library functions : CImg<T>::marhing_ubes() and CImg<T>::marhing_squares().

⇒ Create meshes from implicit functions.

Example : Segmentation of the white matter from MRI images

CImg<> img(``volumeMRI.inr'');

CImg<> region;

float blak[1℄={0};

img.draw_fill(X0,Y0,Z0,blak,region,10.0f);

(region*=-1).blur(1.0f).normalize(-1,1);

CImgList<> points, faes;

region.marhing_ubes(0,points,faes);

CImgList<unsigned har> olors;

olors.insert(faes.size,CImg<unsigned har>::vetor(200,100,20));

CImg<unsigned har>(800,600,1,3).fill(0).

display_objet3d(points,faes,olors);

Example : Segmentation of the white matter from MRI images

Example : Isophotes with marching squares

Outline - PART II of II : More insights

• Image Filtering : Goal and principle.

• Convolution - Correlation.

• Morphomaths - Median Filter.

• Anisotropic smoothing.

• Other related functions.

• Image Loops : Using predefined macros.

• Simple loops.

• Neighborhood loops.

• The plug-in mechanism.

• Dealing with 3D objects.

⇒ Shared images.

Shared images : Context

• Two frequent cases with undesired image copies :

1. Sometimes, we want to pass contiguous parts of an image (but not all the image)
to a function :

onst CImg<> img(``milla.jpg'');

CImgList<> RG = img.get_hannels(0,1).get_split('v');

Shared images : Context

• Two frequent cases with undesired image copies :

1. Sometimes, we want to pass contiguous parts of an image (but not all the image)
to a function :

onst CImg<> img(``milla.jpg'');

CImgList<> RG = img.get_hannels(0,1).get_split('v');

2. ..Or, we want to modify contiguous parts of an image (but not all the image) :

CImg<> img(``milla.jpg'');

img.draw_image(img.get_hannel(1).blur(3),0,0,0,1);

Shared images : Context

• Two frequent cases with undesired image copies :

1. Sometimes, we want to pass contiguous parts of an image (but not all the image)
to a function :

onst CImg<> img(``milla.jpg'');

CImgList<> RG = img.get_hannels(0,1).get_split('v');

2. ..Or, we want to modify contiguous parts of an image (but not all the image) :

CImg<> img(``milla.jpg'');

img.draw_image(img.get_hannel(1).blur(3),0,0,0,1);

⇒ ... But we also want to avoid image copies for better performance...

Shared images

• Solution : Use shared images :

1. Replace :

onst CImg<> img(``milla.jpg'');

CImgList<> RG = img.get_hannels(0,1).get_split('v');

by onst CImg<> img(``milla.jpg'');

CImgList<> RG = img.get_shared_hannels(0,1).get_split('v');

Shared images

• Solution : Using shared images :

2. Replace :

CImg<> img(``milla.jpg'');

img.draw_image(img.get_hannel(1).blur(3),0,0,0,1);

by CImg<> img(``milla.jpg'');

img.get_shared_hannel(1).blur(3);

Shared images

• Regions composed of contiguous pixels in memory are candidates for being
shared images :

• CImg<T>::get_shared_point[s℄()

• CImg<T>::get_shared_row[s℄()

• CImg<T>::get_shared_plane[s℄()

• CImg<T>::get_shared_hannel[s℄()

• CImg<T>::get_shared()

• Image attribute CImg<T>::is_shared tells about the shared state of an image.

• Shared image destructor does nothing (no memory freed).

⇒ Warning : Never destroy an image before its shared version !!

Shared images and CImgList<T>

• Inserting a shared image CImg<T> into a CImgList<T> makes a copy :

CImgList<> list;

CImg<> shared = img.get_shared_hannel(0);

list.insert(shared);

shared.assign(); // OK, 'list' not modified.

• Function CImgList<T>::insert() can be used in a way that it forces the insertion
of a shared image into a list.

CImgList<unsigned har> olors;

CImg<unsigned har> olor = CImg<unsigned har>::vetor(255,0,255);

list.insert(1000,olors,list.size,true);

olor.fill(0); // 'list' will be also modified.

Conclusion

Conclusion and Links

• The CImg Library eases the coding of image processing algorithms.

• For more details, please go to the official CImg site !

http://img.soureforge.net/

• A ’complete’ inline reference documentation is available (generated with doxygen).

• A lot of simple examples are provided in the CImg package, covering a lot of
common image processing tasks. It is the best information source to understand
how CImg can be used at a first glance.

• Finally, questions about CImg can be posted in its active Sourceforge forum :
(Available from the main page).

Conclusion and Links

• Now, you know almost everything to handle complex image processing tasks with
the CImg Library.

⇒ You can contribute to this open source project :

– Submit bug reports and patches.
– Propose new examples or plug-ins .

Used in real world : “GREYCstoration”

• This anisotropic smoothing function has been embedded in an open-source
software : GREYCstoration .

⇒ Distributed as a free command line program or a plug-in for GIMP.

⇒ http://www.grey.ensiaen.fr/� dtshump/greystoration/

Used in real world : DT-MRI Visualization and FiberTracking

• DTMRI dataset visualization and fibertracking code is distributed in the CImg
package (File examples/dtmri view.cpp, 823 lines).

Corpus Callosum Fiber Tracking

The end

Thank you for your attention.

Time for additional questions if any ..

