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Outline - PART | of Il : CImg Library Overview

e Context : Image Processing with C++.

e Aim and targeted audience.

e \Why considering The Climg Library ?
e Clmg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e CimgDisplay : Image display and user interaction.

e Displaying images in windows.



Outline - PART Il of Il : More insights

e Image Filtering : Goal and principle.

e Convolution - Correlation.
e Morphomaths - Median Filter.
e Anisotropic smoothing.

e Other related functions.
e Image Loops : Using predefined macros.

e Simple loops.

e Neighborhood loops.
e The plug-in mechanism.
e Dealing with 3D objects.

e Shared images.
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—> Aim and targeted audience.

e \Why considering The Climg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e CimgDisplay : Image display and user interaction.

e Displaying images in windows.



Context

e Digital Images.

e On a computer, image data stored as a discrete array of values (pixels or voxels).
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Context

e Acquired digital images have a lot of different types :

— Domain dimensions : 2D (static image), 2D + t (image sequence), 3D
(volumetric image), 3D + t (sequence of volumetric images), ...

— Pixel dimensions : Pixels can be scalars, colors, N — D vectors, matrices, ...

— Pixel data range : depends on the sensors used for acquisition, can be N-bits
(usually 8,16,24,32...), sometimes float-valued.

— Type of sensor grid : Rectangular, Octagonal, ...

e All these different image types are digitally stored using different file formats :

— PNG, JPEG, BMP, TIFF, TGA, DICOM, ANALYZE, ...



Context

@1Iy:W x H— [0,255]3 (b) I : W x H x D — [0, 65535]32 ©I3: W x Hx T — [0,4095]
e [/, : classical RGB color image (digital photograph, scanner, ...) (8 bits)
e [, : DT-MRI volumetric image with 32 magnetic field directions (16 bits)

e I3 : Sequence of echography images (12 or 16 bits).



Context

e Image Processing and Computer Vision aim at the elaboration of numerical
algorithms able to automatically extract features from images, interpret them and
then take decisions.

= Conversion of a pixel array to a semantic description of the image.

Is there any white pixel in this image ?

Is there any contour in this image ?

Is there any object ?

Where’s the car ?

|s there anybody driving the car ?



Context ks s @

Some observations about Image Processing and Computer Vision :

e They are huge and active research fields.
e The final goal is almost impossible to achieve !

e There have been thousands (millions?) of algorithms proposed in this field, most
of them relying on strong mathematical modeling.

e The community is varied and not only composed of very talented programmers.

= How to design a reasonable and useable programming library for such people ?



Observation

e Most of advanced image processing techniques are “type independent”.
e EX: Binarization of animage I : (2 — I' by a threshold ¢ € R.

0 i [[Z1(p)]| < e

I:Q—{0,1} suchthat YpeQ, I(p)= .
L if [I(p)|| >=¢

I : © € R? — [0, 255] I:QeR —R



Context

e Implementing an image processing algorithm should be as independent as
possible on the image format and coding.
= (Generic Image Processing Libraries :

(...), Freelmage, Deuvil, (...), OpenCV, Pandore, Cimg, Vigra, GIL, Olena, (...)

e C++is a “good” programming language for solving such a problem :

- Genericity is possible, quite elegant and flexible (template mechanism).
- Compiled code. Fast executables (good for time-consuming algorithms).
- Portable , huge base of existing code.

e Danger : Too much genericity may lead to unreadable code.
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Too much genericity... (Example 1).

-~ [£] Main Page

w-@ File List
EI[:QI Class List
@ mweg::internal::_from_float< n, ncomps, qbits, color_system =
: nhgg::internal:: to float< n, ncomps, ¢bits, color system =
vin::topo::combinatorial_map::internal::alpha< U >
mig::any< E >
cum::topo::combinatorial map::internal::any< Inf =
nirg::any_ntg< E =
mig::internal::any ntg < E >
aim::topo::combinatorial map::internal::anyfunc= U, V, Inf =
«m::iocinternal:;anything
wim:: morpho:: attr::attr_traits< ball parent _change< I, Exact > =
s:morpho:: attr::attr_traits< ball type< I, Exact = =
@im::morpho:: attr::attr_traits< box_type< I, Exact > =
@iz morpho:: attr::attr_traits< card full type< I, T, Exact = =
wlm::morpho:: attr::attr_traits< card_type< T, Exact > =
im:: morpho:: attr::attr_traits< cube type< 1, Exact = >
wlm::morpho:: attr::attr traits< dist type< I, Exact > >
@im::morpho:: attr::attr_traits= height type= T, Exact = =
gim: :morpho:: attr::attr traits< integral type< T, Exact = =

wlm:: morpho::attr::attr_traits= maxvalue_type< T, Exact = >

alm:: morpho:: attr::attr traits< minvalue type< T, Exact = >

il il oo c il e cl AR oy

mlnssmmmrhoes bt sne bt Frmdto e athooe nnmmne Thind T Twormed e ow
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Too much genericity... (Example 2).

typedef cross_vector image wiew types
= mpl::vector«<kbitss, bitslss,
mpl: :vector«<rgbh_t, omyk_ts,
kinterleavedandrlanar,

kHMonstepaAndstep,
false JJ/ falee == mutable; true == read-ocnly

=1:Cype my_views t;
typedef any image wviewsmy views T= my_any imagse view t;

$include <boost/mpl /vector.hpps
#include =gil/extension/dynamic_image /dynamic_image all .hpps

#include =gil/extension/io/jpeg _dynamic io.hpps

typedef mpl::vectore«grays_1image t, grayls image t, rgbs image t, rgblé_image L= my_img types:
any_1mage=my_1imJg types= runtime image;

dpeg read image ("input.]jpg", runtime_image) ;

grayea_1mage t gradient (get dimensicone (rnuntims imagel ) ;

¥ _lumincsity gradient (const view{runtime image) , view(gradient)):
ipeg _write wiew ("X _gradient.jpg", color converted wiswegrays pixel £»(const_wisew (gradient)));

e Strictly speaking, this is more C++ stuffs (problems?) than image processing.

=- Definitely not suitable for non computer geeks !!
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The CIimg Library

e An open-source C++ library aiming to simplify the development of image
processing algorithms for generic (enough) datasets (CeCILL License).

e Primary audience : Students and researchers working in Computer Vision and
Image Processing labs, and having standard notions of C++.

e It defines a set of C++ classes able to manipulate and process image objects.

e Started in late 1999, the project is now hosted on Sourceforge since December
2003 :
http://cimg.sourceforge.net/

C++ Template Image Processing Library. % sl @
) sl B iNnRIA
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e Context : Image Processing with C++.

e Aim and targeted audience.

— Why considering The Cimg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e CimgDisplay : Image display and user interaction.

e Displaying images in windows.
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Main characteristics

Clmg is lightweight

o Total size of the full Cimg (.zip) package : approx. 12.5 Mb.

e All the library is contained in a single header file CImg.h, that must be included in
your C++ source :
#include ‘““CImg.h”’ // Just do that...
using namespace cimg_library; // ...and you can play with the library

e The library itself only takes 2.2Mb of sources (approximately 45000 lines).

e The library package contains the file Cimg.h as well as documentation, examples
of use, and additional plug-ins.



Main characteristics

Clmg is lightweight

e What ? a library defined in a single header file ?

— Simplicity “a la STL.



Main characteristics

Clmg is lightweight

e What ? a library defined in a single header file ?

— Simplicity “a la STL”.

— Used template functions and structures know their type only during the
compilation phase :
= No relevance in having pre-compiled objects (.cpp—.0).



Main characteristics

Clmg is lightweight

e What ? a library defined in a single header file ?

— Simplicity “a la STL”.

— Used template functions and structures know their type only during the
compilation phase :
= No relevance in having pre-compiled objects (.cpp—.0).

— Why not several headers (one for each class) ?
= Interdependence of the classes : all headers would be always necessary.



Main characteristics

Clmg is lightweight

e What ? a library defined in a single header file ?

— Simplicity “a la STL”.

— Used template functions and structures know their type only during the
compilation phase :
= No relevance in having pre-compiled objects (.cpp—.0).

— Why not several headers (one for each class) ?
= Interdependence of the classes : all headers would be always necessary.

— Only used functions are actually compiled :
= Small generated executables.



Main characteristics

Clmg is lightweight

e What ? a library defined in a single header file ?

— Simplicity “a la STL.

— Used template functions and structures know their type only during the
compilation phase :
= No relevance in having pre-compiled objects (.cpp—.0).

— Why not several headers (one for each class) ?
= Interdependence of the classes.

— Only used functions are actually compiled :
= Small generated executables.

e Drawback : Compilation time and needed memory important when optimization
flags are set.
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Clmg is (sufficiently) generic :

e CIimg implements static genericity by using the C++ template mechanism.
e One template parameter only : the type of the image pixel.

e Cimg defines an image class that can handle hyperspectral volumetric (i.e 4D)
Images of generic pixel types.

e CIimg defines an image list class that can handle temporal image sequences.
e ... But, Cimg is limited to images having a rectangular grid, and cannot handle

Images having more than 4 dimensions.

= Clmg covers actually 99% of the image types found in real world applications.
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Main characteristics

Clmg is multi-platform

e It does not depend on many libraries.
It can be compiled only with existing system libraries.

e Advanced tools or libraries may be used by Cimg (ImageMagick, XMedcon, libpng,
libjpeg, libtiff, libfftw3...), these tools being freely available for any platform.

e Successfully tested platforms : Win32, Linux, Solaris, *BSD, Mac OS X.

e Itis also “multi-compiler” : g++, Visual Studio .NET, Intel ICL, Clang++.
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Main characteristics

And most of all, .... Cimg is very simple to use

e Only 1 single file to include.

e Only 4 C++ classes to know :
CImg<T>, CImgList<T>, CImgDisplay, CImgException.

e Very basic low-level architecture, simple to apprehend (and to hack if necessary!).
e Enough genericity and library functions, allowing complex image processing tasks.

.... and extensible :

e Simple plug-in mechanism to easily add your own functions to the library core
(without modifying the file CImg.h of course).
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#include "CImg.h"

using namespace cimg_library,

int main(int argc, char **argv) {
CImg<unsigned char> img(300,200,1,3);
img.£i11(32);
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img.blur(2,0,0);

return O;
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#include "CImg.h"

using namespace cimg_library,
int main(int argc, char **argv) {

CImg<unsigned char> img(300,200,1,3);
img.fi11(32);

img.noise(128);

img.blur(2,0,0);

const unsigned char white[] = { 255,255,255 };
img.draw_text (80,80, "Hello World",white,0,32);

return O;



Hello World step by step o G

#include "CImg.h"

using namespace cimg_library,
int main(int argc, char **argv) {

CImg<unsigned char> img(300,200,1,3);
img.fi11(32);

img.noise(128);

img.blur(2,0,0);

const unsigned char white[] = { 255,255,255 };
img.draw_text (80,80, "Hello World",white,0,32);
img.display();

return O;



Hello World step by step

Cimg<unsigned char=

Hello World




Hello World step by step : animated kS smmm @ b

#include "CImg.h"

using namespace cimg_library,
int main(int argc, char *x*argv) A

const CImg<unsigned char> img =
CImg<unsigned char>(300,200,1,3).£1i11(32) .noise(128) .blur(2,0,0).
draw_text(80,80,"Hello World",CImg<unsigned char>::vector(255,255,255) .ptr(),0,32);

CImgDisplay disp(img,"Moving Hello World",0);
for (float t=0; !'disp.is_closed(); t+=0.04) {
CImg<unsigned char> res(img);
cimg_forYC(res,y,v)
res.get_shared_row(y,0,v).shift((int) (40*std: :sin(t+y/50.0)),0,0,0,2);
disp.display(res) .wait(20);
if (disp.is_resized()) disp.resize();

}

return O;
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Another example : Computing gradient norm of a 3D volumetricg‘s '''''''' |

o Let:Q € R3 — R, compute

aI\* [oI\® [OI\’
wee 191 = (5) + (5) + (&)

e Code:

#include °‘CImg.h’’

using namespace cimg_library,

int main(int argc, char *x*argv) A
const CImg<float> img(‘‘brain_irm3d.hdr’’);
const CImgList<float> grad = img.get_gradient(‘‘xyz’’);
CImg<float> norm = (grad[0].pow(2) + grad[l].pow(2) + grad[2].pow(2));
norm.sqrt() .get_normalize(0,255) .save(‘ ‘brain_gradient3d.hdr’’);

return O;



Another example : Computing gradient norm of a 3D volumetricks um@ 5
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e Let see what we can do with this library.
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Overall Library Structure

e The whole library classes and functions are defined in the cimg_library::
namespace.

e The library is composed of only four C++ classes :

— CImg<T>, represents an image with pixels of type T.
— ClmgList<T> , represents a list of images CImg<T>.

— ClmgDisplay , represents a display window.

— ClmgException , used to throw library exceptions.

e A sub-namespace cimg_library::cimg:: defines some low-level library functions
(including some useful ones as
rand(), grand(), min<T>(), max<T>(), abs<T>(), sleep(), etc...).



Overall Library Structure

cimg_library::
cimg:: Clmg<T> ClmgList<T>
Low-level functions Image Image List
ClimgException || CimgDisplay
Error handling Display Window
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e All Cimg classes incorporate two different kinds of methods :

— Methods which act directly on the instance object and modify it. These methods
returns a reference to the current instance, so that writting function pipelines is
possible :

CImg<>(‘‘toto.jpg’’) .blur(2) .mirror(’y’) .rotate(45) .save(‘ ‘tutu.jpg’’);
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possible :
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— Other methods return a modified copy of the instance. These methods start
with get_*() :
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Clmg methods o UE-= @

e All Cimg classes incorporate two different kinds of methods :

— Methods which act directly on the instance object and modify it. These methods
returns a reference to the current instance, so that writting function pipelines is
possible :

CImg<>(‘‘toto.jpg’’) .blur(2) .mirror(’y’) .rotate(45) .save(‘ ‘tutu.jpg’’);

— Other methods return a modified copy of the instance. These methods start
with get_x*() :

CImg<> img(‘‘toto.jpg’’);

CImg<> img2 = img.get_blur(2); // ’img’ is not modified
CImg<> img3 = img.get_rotate(20) .blur(3); // ’img’ is not modified

= Almost all CiImg methods are declined into these two versions
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e Context : Image Processing with C++.

e Aim and targeted audience.

e Why considering The Clmg Library ?
= CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e ClmgDisplay : Image display and user interaction.

e Displaying images in windows.
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Cimg<T> : Overview

e This is the main class of the Cimg Library. It has a single template parameter T.

e A CImg<T> represents an image with pixels of type T (default template parameter
IS T=float). Supported types are the C/C++ basic types : bool, unsigned char,

char, unsigned short, short, unsigned int, int, float, double, ...

e Animage has always 3 spatial dimensions (width, height,depth)+ 1 hyperspectral
dimension (dim) : It can represent any data from a scalar 1D signal to a 3D volume
of vector-valued pixels.

e Image processing algorithms are methods of CImg<T> (% STL ) :

blur(), resize(), convolve(), erode(), load(), save()....

e Method implementation aims to handle the most general case (3D volumetric
hyperspectral images).



Clmg<T> : Low-level Architecture (for hackers!)

e The structure CImg<T> is defined as :

template<typename T> struct Clmg {
unsigned int _width;
unsigned int _height;
unsigned int _depth;
unsigned int _dim;
bool _1i1s_shared;
Tx _data;



Clmg<T> : Low-level Architecture (for hackers!)
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e A CImg<T>image is always entirely stored in memory.

e A CImg<T>Is independent : it has its own pixel buffer.



Clmg<T> : Low-level Architecture (for hackers!)

e The structure CImg<T> is defined as :

template<typename T> struct CImg {
unsigned int _width;
unsigned int _height;
unsigned int _depth;
unsigned int _dim;
bool _1i1s_shared;
Tx data;
I

e A CImg<T>image is always entirely stored in memory.
e A CImg<T>is independent : it has its own pixel buffer most of the time.

e Clmg member functions (destructor, constructors, operators,...) handle memory
allocation/desallocation efficiently.



Clmg<T> : Memory layout (for hackers!)

template<typename T> struct Clmg {
unsigned int _width;
unsigned 1nt _height;
unsigned int _depth;
unsigned int _dim;
bool _1s_shared;
Tx _data;
b

e Pixel values are not stored in a typical “‘RGBRGBRGBRGBRGB” order.

e Pixel values are stored first along the X-axis, then the Y-axis, then the Z-axis, then
the C-axis :

R(0,0) R(1,0) ... R(W-1,0) ... R(0,1) R(1,1) ... R(W-1,1) ... R(0,H-1) R(1,H-1)
... R(W-1,H-1) ... G(0,0) ... G(W-1,H-1) ... B(0,0) ... B(W-1,H-1).



Outline - PART | of Il : CImg Library Overview

e Context : Image Processing with C++.

e Aim and targeted audience.

e \Why considering The Climg Library ?
e CImg<T> : A class for image manipulation.

—> Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e CimgDisplay : Image display and user interaction.

e Displaying images in windows.



Clmg<T> : Constructors (1)

e Default constructor, constructs an empty image.
CImg<T>();

e No memory allocated in this case, images dimensions are zero.
e Useful to declare an image without allocating its pixel values.

#include ‘CImg.h’’

using namespace cimg_library,

int main() {
CImg<unsigned char> img_8bits;
CImg<unsigned short> img_16bits;
CImg<float> img_float;

return O;



Clmg<T> : Constructors (2)

e Constructs a 4D image with specified dimensions. Omitted dimensions are set
to 1 (default parameter).
CImg<T>(unsigned int, unsigned int, unsigned int, unsigned int);

#include ‘‘Clmg.h’’

using namespace cimg_library,;

int main() A
CImg<float> img(100,100); // 2D scalar image.
CImg<unsigned char> img2(256,256,1,3); // 2D color image.
CImg<bool> img3(128,128,128); // 3D scalar image.
CImg<short> img4(64,64,32,16); // 3D hyperspectral image (16 bands).

return O;

e No initialization of pixel values is performed. Can be done with :

CImg<T>(unsigned int, unsigned int, unsigned int, unsigned int, const T&);



Clmg<T> : Constructors (3) DR, o

e Create an image by reading an image from the disk (format deduced by the
filename extension).
CImg<T>(const char *filename);

#include ‘CImg.h’’

using namespace cimg_library,

int main() {
CImg<unsigned char> img(‘‘nounours.jpg’’);
CImg<unsigned short> img2(‘‘toto.png’’);
CImg<float> img3(‘ ‘toto.png’’);

return O;

e Pixel data of the file format are converted (static cast) to the specified template
parameter.



Clmg<T> : In-place constructors

e CImg<T>% assign(...)

Each constructor has an in-place version with same parameters.

CImg<float> img,
img.assign(‘ ‘toto.jpg’’);
img.assign(256,256,1,3,0);

img.assign();

e This principle is extended to the other Cimg classes.

CImgList<float> list;
list.assign(imgl,img2,img3) ;
CImgDisplay disp;
disp.assign(list,’’List display’’);



Clmg<T> : Access to image data informations

e Get the dimension along the X,Y,Z or C-axis (width, height, depth or channels).
int width() const;

int W = img.width(), H = img.height(), D = img.depth(), S = img.spectrum();
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e Get the dimension along the X,Y,Z or C-axis (width, height, depth or channels).
int width() const;

int W = img.width(), H = img.height(), D = img.depth(), S = img.spectrum();

e Get the pixel value at specified coordinates. Omited coordinates are set to O.

T& operator () (unsigned int, unsigned int, unsigned int, unsigned int);

unsigned char R = img(x,y), G = img(x,y,0,1), B = img(x,y,2);
float val = volume(x,y,z,v);

img(x,y,z) = x*y;

(Out-of-bounds coordinates are not checked !)



Clmg<T> : Access to image data informations

e Get the dimension along the X,Y,Z or C-axis (Width, Height, Depth or Channels).
int width() const;

int W = img.width(), H = img.height(), D = img.depth(), S = img.spectrum();
e Get the pixel value at specified coordinates. Omited coordinates are set to O.
T& operator () (unsigned int, unsigned int, unsigned int, unsigned int);

unsigned char R = img(x,y), G = img(x,y,0,1), B = img(x,y,2);
float val = volume(x,y,z,V);

img(x,y,z) = X*y;
(Out-of-bounds coordinates are not checked !)
e Getthe pixel value at specified sub-pixel position, using bicubic interpolation. Out-

of-bounds coordinates are checked.

float cubic_pix2d(float, float, unsigned int, unsigned int);

float val = img.get_cubic_pix2d(x-0.5f,y-0.5f);



Clmg<T> : Copies and assignments

e Construct an image by copy. Perform static pixel type cast if needed.
template<typename t> CImg<T>(const CImg<t>& img);

CImg<float> img_float(img_double);



Clmg<T> : Copies and assignments

e Construct an image by copy. Perform static pixel type cast if needed.
template<typename t> CImg<T>(const CImg<t>& img);

CImg<float> img_float(img_double);

e Assignement operator. Replace the instance image by a copy of img.
template<typename t> CImg<T>& operator=(const Clmg<t>& img);

CImg<float> 1img;

CImg<unsigned char> img2(‘‘toto.jpg’’), img3(256,256) ;
img = 1mg2;

img = 1mg3;

e Modifying a copy does not modify the original image (own pixel buffer).



Clmg<T> . Math operators and functions

e Most of the usual math operators are defined : +,-,*,/,+=,-=, . ..

CImg<float> img(‘‘toto.jpg’’), dest;
dest =(2*img+5) ;

dest+=1img;



Clmg<T> . Math operators and functions

e Most of the usual math operators are defined : +,-,*,/,+=,-=, . ..

CImg<float> img(‘‘toto.jpg’’), dest;
dest =(2*img+5) ;

dest+=1img;
e Operators always try to return images with the best datatype.

CImg<unsigned char> img(‘‘toto.jpg’’);
CImg<float> dest;

dest = 1mgx0.1f;

1mg*=0.1f;



Clmg<T> . Math operators and functions

e Most of the usual math operators are defined : +,-,*,/,+=,-=, ...

CImg<float> img(‘‘toto.jpg’’), dest;
dest =(2*img+5) ;

dest+=1img;
e Operators always try to return images with the best datatype.

CImg<unsigned char> img(‘‘toto.jpg’’);
CImg<float> dest;

dest = 1mgx0.1f;

1mg*=0.1f;

e Usual math functions are also defined : sqrt (), cos(), pow()...

img.pow(2.5);
res = img.get_pow(2.5);
res = img.get_cos() .pow(2.5);



Clmg<T> . Matrices operations

e The *x and / operators corresponds to a matrix product/division !

CImg<float> A(3,3), v(1,3);
CImg<float> res = Axv,;

e Use CImg<T>::mul() and CImg<T>::div() for pointwise operators.



CImg<T> : Matrices operations g LE @ A=

e The *x and / operators corresponds to a matrix product/division !

CImg<float> A(3,3), v(1,3);
CImg<float> res = Axv,;

e Use CImg<T>::mul() and CImg<T>::div() for pointwise operators.

e Usual matrix functions and transformations are available in Cimg : determinant,
SVD, eigenvalue decomposition, inverse, ...

CImg<float> A(10,10), v(1,10);

const float determinant = A.det();

CImg<float> pseudo_inv =
((AxA.get_transpose()).inverse())*A.get_transpose();
CImg<float> pseudo_inv2 = A.get_pseudoinverse();



Clmg<T> : Matrices operations Ry @ L=

e The * and / operators corresponds to a matrix product/division !

CImg<float> A(3,3), v(1,3);
CImg<float> res = Axv,;

e Use CImg<T>::mul() and CImg<T>::div() for pointwise operators.

e Usual matrix functions and transformations are available in Cimg : determinant,
SVD, eigenvalue decomposition, inverse, ...

CImg<float> A(10,10), v(1,10);

const float determinant = A.det();

CImg<float> pseudo_inv =
((AxA.get_transpose()).inverse())*A.get_transpose();
CImg<float> pseudo_inv2 = A.get_pseudoinverse();

e Warning : Matrices are viewed as images, so first indice is the column
number, second Is the line number : A;; =A(,1)



Clmg<T> : Image destruction

e Image destruction is done in the “CImg() method.
e Used pixel buffer memory (if any) is automatically freed by the destructor.
e Destructor is automatically called at the end of a block.

e Memory deallocation can be forced by the assign() function.

CImg<float> img(10000,10000); // Need 4%10000~2 bytes = 380 Mo
float det = img.det();

// We won’t use img anymore. ..

img.assign();

// Equivalent to :
img = CImg<float>();
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e Context : Image Processing with C++.

e Aim and targeted audience.

e \Why considering The Climg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.

—> Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.

e Basic manipulation functions.

e CimgDisplay : Image display and user interaction.

e Displaying images in windows.



Clmg<T> : Image manipulation

e f111() : Fill an image with one or several values.

CImg<> img(256,256), vector(1,6);
img.£i11(0);
vector.fil11(1,2,3,4,5,6);

e Apply basic global transformations on pixel values.
normalize(), cut(), quantize(), threshold().

CImg<float>
img(‘‘toto. jpg’) ;
img.quantize(16);
img.normalize(0,1);
img.cut(0.2f,0.8f);
img.threshold(0.5f);

img.normalize (0,255);




Clmg<T> : Image manipulation

e rotate() : Rotate an image with a given angle.
CImg<> img(‘‘milla.png’’);
img.rotate(30);

e resize() : Resize an image with a given size.
CImg<> img(‘‘mini.jpg’’);
img.resize(-300,-300); // -300 = 3007

= Border conditions and interpolation types can be chosen by the user.




Cimg<T> : Image manipulation ORs) @ i[-_-i'i"'.".

e get_crop() : Get a sub—image of the instance image.

CImg<> img(256,256) ;
img.get_crop(0,0,128,128); // Get the upper-left half image

e Color space-conversions :  RGBtoYUV(), RGBtoLUT(), RGBtoHSV(),... and
Inverse transformations.

e Filtering : blur(), convolve(), erode(), dilate(), FFT(), deriche(),....

e In the reference documentation, functions are grouped by themes....

http://cimg.sourceforge.net/reference/



Cimg<T> : Image manipulation

#include ‘‘Clmg.h’’

using namespace cimg_library,

int main() {
CImg<unsigned char> img(‘‘milla.jpg’’);
img.blur(l).crop(15,52,150,188) .dilate(10) .mirror(’x’);
img.save(‘ ‘result.png’’);

return O;




Outline - PART | of Il : CImg Library Overview

e Context : Image Processing with C++.

e Aim and targeted audience.

e \Why considering The Climg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

— Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.

e CimgDisplay : Image display and user interaction.

e Displaying images in windows.



Clmg<T> : Drawing functions

e Clmg proposes a lot of functions to draw features in images.
= Points, lines, circles, rectangles, triangles, text, vector fields, 3D objects, ...
e All drawing function names begin with draw_x ().

e Features are drawn directly on the instance image (so there are not const).

Jawbreaker




Clmg<T> : Drawing functions

e All drawing functions work the same way : They need the instance image, feature
coordinates, and a color (eventual other optional parameters can be set).
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e They return a reference to the instance image, so they can be pipelined.



Clmg<T> : Drawing functions

e All drawing functions work the same way : They need the instance image, feature
coordinates, and a color (eventual other optional parameters can be set).

e They return a reference to the instance image, so they can be pipelined.

e They clip objects that are out of image bounds.



Clmg<T> : Drawing functions

e All drawing functions work the same way : They need the instance image, feature
coordinates, and a color (eventual other optional parameters can be set).

e They return a reference to the instance image, so they can be pipelined.
e They clip objects that are out of image bounds.
e EX: CImg& draw_line(int,int,int,int,T*);

CImg<unsigned short> img(256,256,1,5); // hyperspectral image of ushort
unsigned short color[5] =1 0,8,16,24,32 }; // color used for the drawing
img.draw_line(x-2,y-2,x+2,y+2,color) .

draw_line(x-2,y+2,x+2,y-2,color) .

draw_circle(x+10,y+10,5,color);



Clmg<T> : Drawing functions

All drawing functions work the same way : They need the instance image, feature
coordinates, and a color (eventual other optional parameters can be set).

They return a reference to the instance image, so they can be pipelined.
They clip objects that are out of image bounds.
EX: CImg& draw_line(int,int,int,int,T*);

CImg<unsigned short> img(256,256,1,5); // hyperspectral image of ushort
unsigned short color[5] =1 0,8,16,24,32 }; // color used for the drawing
img.draw_line(x-2,y-2,x+2,y+2,color) .

draw_line(x-2,y+2,x+2,y-2,color) .

draw_circle(x+10,y+10,5,color);

CImg<T>::draw_object3d() can draw 3D objects (mini Open-GL!)



Clmg<T> : Plasma ball (source code)

e The following code draws a “plasma ball” from scratch :

CImg<unsigned char> img(512,512,1,3,0);
for (float alpha=0, beta=0; beta<100; alpha+=0.21f, beta+=0.18f) {
const float
ca = std::cos(alpha), cb = std::cos(beta),
sa = std::sin(alpha), sb = std::sin(beta);
img.draw_line(256+200*ca*sa,256+200*cb*sa,
256+200*saxsb,256+200*sb*ca,
CImg<unsigned char>::vector(alpha*x256,beta*x256,128) .
ptr(),0.5f);
+
const unsigned char white[3] = { 255,255,255 }, bluel3] = { 16,32,128 };
img.draw_circle(256,256,200,white,1.0f, 0U) .draw_£fi11(0,0,blue);
for (int radius = 60; radius>0; --radius)

img.draw_circle(340,172,radius,white,0.02f) ;



CImg<T> : Plasma ball (result) o UE-=
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e Why considering The Clmg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
= ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e ClmgDisplay : Image display and user interaction.

e Displaying images in windows.



ClmgList<T> : Overview

A CImgList<T> represents an array of CImg<T>.

Useful to handle a sequence or a collection of images.

Here also, the memory is not shared by other CImgList<T> or CImg<T> objects.
Looks like a std: :vector<CImg<T> >, specialized for image processing.

Can be used as a flexible and ordered set of images.
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e Context : Image Processing with C++.

e Aim and targeted audience.

e \Why considering The Climg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
—> Basic manipulation functions.

e CimgDisplay : Image display and user interaction.

e Displaying images in windows.



ClmgList<T> : Main functions

// Create a list of 20 color images 100x100.
CImgList<float> list(20,100,100,1,3);

// Insert two images at the end of the list.
list.insert (CImg<float>(50,50));
list.insert (CImg<unsigned char>(‘‘milla.ppm’’));

// Remove the second image from the list.

list.remove(l);

// Resize the bth image of the list.
CImg<float> &ref = list[4];
ref.resize(50,50);

e Lists can be saved (and loaded) as .cimg files (simple binary format with ascii
header).



ClmgList<T>: .cimg files

e Functions CImgList<T>::load_cimg() and CImgList<T>::save_cimg() allow to
load/save portions of . cimg image files.

e Single images (CImg<T> class) can be also loaded/saved into .cimg files.

e Useful to work with big image files, video sequences or image collections.
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e Context : Image Processing with C++.

e Aim and targeted audience.

e \Why considering The Climg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e CimgDisplay : Image display and user interaction.

—> Displaying images in windows.
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CImgDisplay: :display() function.



CimgDisplay : Overview

e A CImgDisplay allows to display CImg<T> or CImgl<T> instances in a window, and
can handle user events that may happen in this window (mouse, keyboard, ...)

e The construction of a CImgDisplay opens a window.
e The destruction of a CImgDisplay closes the corresponding window.

e The display of an image in a CImgDisplay is done by a call to the
CImgDisplay: :display() function.

e A CImgDisplay has its own pixel buffer. It does not store any references to the
CImg<T> or CImgList<T> passed at the last call to CImgDisplay: :display().



CimgDisplay : Handling events o Ub @ A=

e When opening the window, an event-handling thread is created.

e This thread automatically updates volatile fields of the CImgDisplay instance,
when events occur in the corresponding window :

— Mouse events : mouse_x(), mouse_y () and button().
— Keyboard event : key ().
— Window events : is_resized(), is_closed() and is_moved().

e Only one thread is used to handle display events of all opened CImgDisplay.
e This thread is killed when the last display window is destroyed.
e The CImgDisplay class is fully coded both for GDI32 and X11 graphics libraries.

e Display automatically handles image normalization to display float-valued images
correctly.



ClmgDisplay : Useful functions

e Construction :
CImgDisplay displ(img, ‘ ‘My first display’’);
CImgDisplay disp2(640,400,’’My second display’’);
e Display/Refresh image:
img.display(disp);
disp.display (img);
e Handle events :
if (disp.key(O)==cimg: :keyQ) { ... }
if (disp.is_resized()) disp.resize();

if (disp.mouse_x()>20 && disp.mouse_y()<40) { ... }
disp.wait () ;

e Temporize (for animations) : disp.wait(20) ;



CimgDisplay : Example of using CImgDisplay

#include "Clmg.h"
using namespace cimg_library;
int main() {
CImgDisplay disp(256,256,"My Display");
while (!disp.is_closed()) {
if (disp.button&l) {
const int x = disp.mouse_x(), y = disp.mouse_y();
CImg<unsigned char> img(disp.width(),disp.height());
unsigned char col[1] = {255};
img.£i11(0) .draw_circle(x,y,40,col) .display(disp);
b
if (disp.button()&2) disp.resize(-90,-90);
if (disp.is_resized()) disp.resize();
disp.wait();
s

return O;



CENTRE MATIONAL
DE LA RECHERCHE

A more complete example of using  CImg<T> (14 C++ lines) N UE

CImg<> img = CImg<>("img/milla.ppm") .normalize(0,1);

CImgl<unsigned char> visu(img*255, CImg<unsigned char>(512,300,1,3,0));

const unsigned char yellow[3] = {255,255,0}, blue[3]={0,155,255}, blue2[3]={0,0,255}, blue3[3]={0,0,155},

white[3]={255,255,255};

CImgDisplay disp(visu,"Image and Histogram (Mouse click to set the Gamma correction)",0);

for (double gamma=1;'disp.closed() && disp.key()!=cimg::keyQ && disp.key()!=cimg::keyESC; ) {
cimg_forXYZC(visul[0],x,y,z,k) visul[0](x,y,z,k) = (unsigned char) (pow((double)img(x,y,z,k),1.0/gamma)*256) ;
const CImg<> hist = visu[0].get_histogram(50,0,255);
visu[1].£i11(0) .draw_text (50,5, "Gamma = J%g",white,NULL,1,gamma) .
draw_graph(hist,yellow,1,20000,0) .draw_graph(hist,white,2,20000,0);

const int xb = (int) (50+gammax*150) ;
visul[l] .draw_rectangle(51,21,xb-1,29,blue2) .draw_rectangle(50,20,xb,20,blue) .draw_rectangle (xb,20,xb,30,blue) ;

visu[1l] .draw_rectangle(xb,30,50,29,blue3) .draw_rectangle(50,20,51,30,blue3);
if (disp.button() && disp.mouse_x()>=img.width()+50 && disp.mouse_x()<=img.width()+450) gamma = (disp.mouse_x()-img.width()-50) /1!

disp.resize(disp) .display(visu) .wait();

3 _ Image and Histogram [M:

Result :
Histogram manipulation and gamma
correction (example from example file

CImg_demo. cpp)

it I
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= Image Filtering : Goal and principle.
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e Morphomaths - Median Filter.
® Anisotropic smoothing.

e Other related functions.
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e Neighborhood loops.
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e Dealing with 3D objects.

e Shared images.
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— Noise removal . Gaussian or Median filtering.
— Edge enhancement & Deconvolution : Sharpen masks, Fourier Transform.
— Shape analysis : Morphomath filters (erosion, dilatation,..)



Context : Image Filtering

e Image filtering is one of the most common operations done on images in order to
retrieve informations.

e Filtering is needed in the following cases :

— Compute image derivatives (gradient) VI = (4 %)T.

— Noise removal . Gaussian or Median filtering.
— Edge enhancement & Deconvolution : Sharpen masks, Fourier Transform.
— Shape analysis : Morphomath filters (erosion, dilatation,..)

e A filtering process generally needs the image and a mask (a.k.a kernel or
structuring element).



How filtering works ?

e For each point p € Q of the image I, consider its neighborhood N;(p) and combine
It with a user-defined mask M.

—2 3 7 1
1 —3
o :
- —4 .6
1 -2 ... 8 -5 |

e Neighborhood N;(p) and mask M have the same size.
e The operator ¢ may be linear, but not necessarily.

e The result of the filtering operation is the new value at p :

VpeQ, J(p)=Ni(p) e M



Filtering examples

(a) Original image (b) Derivative along x (c) Erosion

o Derivative obtained withe =xand M =[0.5 0 — 0.5]

e Erosion obtained with ¢ = min().
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Linear filtering

e Convolution and Correlation implements linear filtering (e = x)

Convolution : J(z,y) =Y Y I(x—i,y—j)M(i,j)
i

Correlation : J(z,y) =Y Y I(z+iy+j) M(i,j)
i

e CImg<T>::get_convolve(), CImg<T>::convolve() and
CImg<T>::get_correlate(), CImg<T>::correlate().

e Compute image derivative along the X-axis :
CImg<> img(‘‘toto.jpg’’);

CImg<> mask = CImg<>(3,1).£fi11(0.5,0,-0.5);

img.convolve (mask) ;



Linear filtering (2)

e You can set the border condition in convolve() and correlate()

e Common linear filters are already implemented :

— Gaussian kernel for image smoothing :
CImg<T>::get_blur() and CImg<T>: :blur().
— Image derivatives
CImg<T>::get_gradient ("xy") and CImg<T>::get_gradient ("xyz").

—- Faster versions than using the CImg<T>: :convolve () function!

Blur an image with a Gaussian kernel with o = 10.

Using CImg<T>: :convolve() : 1129 ms.

Using CImg<T>: :blur() : 7 ms.



Linear filtering (3)

e When mask size is big, you can efficiently convolve the image by a multiplication
In the Fourier domain.

o CImg<T>::get_FFT() returns a CImgList<T> with the real and imaginary part of the
FT.

o CImg<T>::get FFT(true) returns a CImgList<T> with the real and imaginary part
of the inverse FT.
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I\/Iorphomaths %lgu @ [“f !

e Nonlinear filters.

e Erosion : Keep the mininum value in the image neighborhood having the same
shape than the structuring element mask.
CImg<T>::erode() and CImg<T>: :get_erode().

e Dilatation : Keep the maximum value in the image neighborhood having the same
shape than the structuring element mask.
CImg<T>::dilate() and CImg<T>::get_dilate().

ald | -

(a) Original image (b) Erosion by a 10 x 10 kernel (b) Dilatation by a 10 x 10 kernel



Morphomaths (2) DRz O IS

e Opening : Erode, then dilate :
img.erode(10) .dilate(10);

e Closing : Dilate, then erode :
img.dilate(10) .erode(10) ;.

(a) Original image (b) Opening by a 10 x 10 kernel (b) Closing by a 10 x 10 kernel



Median filtering

e Nonlinear filter : Keep the median value in the image neighborhood having the
same shape than the mask.

e Functions CImg<T>::get_blur_median() and CImg<T>::blur_median().

e Near optimal to remove Salt&Pepper noise.
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Anisotropic smoothing

e Non-linear edge-directed diffusion, very optimized PDE-based algorithm.
e Very efficient in removing Gaussian noise, or other additive noise.

e Able to work on 2D and 3D images.

e Function CImg<T>: :blur_anisotropic().

e A lot of applications : Image denoising, reconstruction, resizing.



Anisotropic smoothing

e CImg<T>::blur_anisotropic() implements the following diffusion PDE :

. oI, 2.1 [
Vi=1,...,n, 5 = trace(TH,;) + ;VIZ- / J /Fa, VTaa da
a=0
du  Ou o%1; 0%l
Oox Oy Ox2 O0x 0y
where J,, = and H,; =
v v %1, 8%l
oxr Oy OxOy Oy?

e Image smoothing while preserving discontinuities (edges).

e One of the advanced filtering tool in the Clmg Library.



Application of CImg<T>::blur_anisotropic()

“Babouin” (détail) - 512x512 - (1 iter., 19s)
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Application of CImg<T>::blur_anisotropic()

“Tunisie” - 555x367 - (1 iter., 115s)



Application of CImg<T>::blur_anisotropic()

“Tunisie” - 555x367 - (1 iter., 115s)
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Application of CImg<T>::blur_anisotropic()

“Bebé” - 400x375 - (2 iter, 5.8s)



Application of CImg<T>::blur_anisotropic()
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“Bébe” - 400x375 - (2 iter, 5.8s)



Application of CImg<T>::blur_anisotropic()

“Van Gogh”



Application of CImg<T>::blur_anisotropic()

“Van Gogh” - (1 iter, 5.122s).



Application of CImg<T>::blur_anisotropic()

“Fleurs” (JPEG, 10% quality).



Application of CImg<T>::blur_anisotropic()

“Corall” (1 iter.)



Application : Image Inpainting

“Bird”, original color image.



Application : Image Inpainting

“Bird”, inpainting mask definition.



Application : Image Inpainting

$|

“Bird”, inpainted with our PDE.



DE LA RECHERCHE

Application : Image Inpainting 3y N

“Chloé au zoo”, original color image.



DE LA RECHERCHE

Application : Image Inpainting )

“Chloé au zoo”, inpainting mask definition.



DE LA RECHERCHE

Application : Image Inpainting )

“Chloé au zoo”, inpainted with our PDE.



Application :

Image Inpainting and Reconstruction

“Parrot”
500x500
(200 iter.,
4m1ls)

“Owl”
320x246
(10 iter., 1mO1s)




Application : Image Resizing

(c) Details from the image resized by bicubic interpolation.

T8

(d) Details from the image resized by a non-linear regularization PDE.




Application : Image Resizing

(@) Original

color image

(b) Bloc Interpolation (c) Linear Interpolation (d) Bicubic Interpolation (e) PDE/LIC Interpolation
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CENTRE NATIOIMAL

Adding noise to images S)

e CImg<T>::noise() and CImg<T>::get_noise().

e Can add different kind of noise to the image with specified distribution : Uniform,
Gaussian, Poisson, Salt&Pepper.

e One parameter that set the amount of noise added.




Retrieving image similarity

e Two indices defined to measure “distance” between two images I1 and 12 : MSE
and PSNR.

e MSE, Mean Squared Error : CImg<T>: :MSE(imgl, img?2).

> peaIlp) = 12()?
card(€2)

MSE(I1,12) =

The lowest the MSE is, the closest the images /1 and 12 are.

e PSNR, Peak Signal to Noise Ratio : CImg<T>: :PSNR(imgl,img2).

M

where M is the maximum value of 11 and 2.



Filtering in CImg : Conclusions

e A lot of useful functions that does the common image filtering tasks.

e Linear and Nonlinear filters.

e But what if we want to define to following filter ???

vpeQ, J(x,y)=>» mod(I(z—iy—j),M(,j))

= There are smart ways to define your own nonlinear filters, using neighborhood
loops.
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Simple loops

e Image loops are very useful in image processing, to scan pixel values iteratively.

e Clmg define macros that replace the corresponding for(..;..;..) Instructions.

cimg_forX(img,x) for (int x=0; x<img.width(); x++)

cimg_forY(img,y) for (int y=0; y<img.height(); y++)

cimg_forZ(img,z) for (int z=0; z<img.depth(); z++)

Tt T

cimg_forC(img,c) for (int c¢=0; c<img.spectrum(); c++)



Simple loops

e Image loops are very useful in image processing, to scan pixel values iteratively.

e Clmg define macros that replace the corresponding for(..;..;..) Instructions.

cimg_forX(img,x) for (int x=0; x<img.width(); x++)

cimg_forY(img,y) for (int y=0; y<img.height(); y++)

cimg_forZ(img,z) for (int z=0; z<img.depth(); z++)

Tt T

cimg_forC(img,c) for (int c¢=0; c<img.spectrum(); c++)

e Clmg also defines :

cimg_forXY(img,x,y) < cimg_forY(img,y) cimg_forX(img,x)
cimg_forXYZ(img,x,y,z) < cimg_forZ(img,z) cimg_forXY(img,x,y)
cimg_forXYZC(img,x,y,z,c) < cimg forC(img,c) cimg forXYZ(img,x,y,z)



Simple loops (2)

e These loops lead to natural code for filling an image with values :

CImg<unsigned char> img(256,256);
cimg_forXY(img,x,y) { img(x,y) = (x*xy)%h256; }



Simple loops (2)

e These loops lead to natural code for filling an image with values :

CImg<unsigned char> img(256,256);
cimg_forXY(img,x,y) { img(x,y) = (x*xy)%h256; }




Interior and Border loops

e Slight variants of the previous loops, allowing to consider only interior or image
borders.

e An extra parameter n telling about the size of the image border.

cimg_for_insideXY(img,x,y,n) and cimg_for_borderXY(img,x,y,n) (Same for 3D
volumetric images).

CImg<unsigned char> img(256,256) ;
cimg_for_insideXY(img,x,y,64) img(x,y) = x+y;
cimg_for_borderXY(img,x,y,64) img(x,y) = x-y;
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Neighborhood-based loops

e Very powerful loops, allow to loop an entire neighborhood over an image.
e From 2 x 2to 5 x 5 for 2D neighborhood.

e From 2 x 2 x 210 3 x 3 x 3 for 3D neighborhood.

e Border condition : Nearest-neighbor.

e Need an external neighborhood variable declaration.

e Allow to write very small, clear and optimized code.



Neighborhood-based loops: 3 x 3 example

e Neighborhood declaration :

CImg_3x3(I,float).



Neighborhood-based loops: 3 x 3 example

e Neighborhood declaration :

CImg_3x3(I,float).

e Actually, the line above defines 9 different variables, named :

Ipp | Icp | Inp
Ipc | Icc | Inc

Ipn | Icn | Inn

where p = previous, c = current, n = next.



Neighborhood-based loops: 3 x 3 example

e Neighborhood declaration :

CImg_3x3(I,float).

e Actually, the line above defines 9 different variables, named :

Ipp | Icp | Inp
Ipc | Icc | Inc

Ipn | Icn | Inn

where p = previous, c = current, n = next.

e Using a cimg_for3x3() automatically updates the neighborhood with the correct
values.

cimg_for3x3(img,x,y,0,0,I,float) {
. Here, Ipp, Icp, ... Icn, Inn are updated ...



Neighborhood-based loops

e Example of use : Compute the gradient norm with one loop.

CImg<float> img(‘‘milla.jpg’’), dest(img);

CImg_3x3(I,float);

cimg_forC(img,v) cimg_for3x3(img,x,y,0,v,I,float) {
const float ix = (Inc-Ipc)/2, iy = (Icn-Icp)/2;
dest(x,y) = std::sqrt(ix*ix+iy*iy);




Example : Modulo Filtering

e What if we want to define to following filter ???

vpeQ, J(x,y)=>» mod(I(z—iy—j),M(,j))



Example : Modulo Filtering

e What if we want to define to following filter ???

vpeQ, J(x,y)=>» mod(I(z—iy—j),M(,j))

e Simple solution, using a 3x3 mask :

CImg<unsigned char> img(‘‘milla.jpg’’), mask(3,3);
CImg<> dest(img);
CImg_3x3(I,float);
cimg_forV(img,v) cimg_for3x3(img,x,y,0,v,I)
dest (x,y) = mask(0,0)%Ipp + mask(1,0)%Icp + mask(2,0)%Inp
+ mask(0,1)%Ipc + mask(1,1)%Icc + mask(2,1)%Inc
+ mask(0,2)%Ipn + mask(1,2)%Icn + mask(2,2)%Inn;
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e Not suitable to be integrated in the Clmg Library, but interesting to share anyway.



Clmg plugins

e Sometimes an user needs or defines specific functions, either very specialized or
not generic enough.

e Not suitable to be integrated in the Cimg Library, but interesting to share anyway.

= Integration possible in Cimg via the plug-ins mechanism.

¢

#define cimg_plugin
#include ‘CImg.h’’

using namespace cimg_library,

‘my_plugin.h’’

int main() {
CImg<> img(‘‘milla.jpg’’);
img.my_wonderful_function() ;

return O;



Clmg plugins

CImg<T> my_wonderful_function() {
(*this)=(T)3.14f;

return *this;




Clmg plugins

e Plugin functions are directly added as member functions of the Clmg class.

// File ‘‘my_plugin.h’’

CImg<T> my_wonderful_function() {
(*this)=(T)3.14f;
return *this;

¥

e Very flexible system, implemented as easily as :

class CImg<T> {

#i1fdef cimg_plugin
#include cimg_plugin
#endif

Jr



Clmg plugins

e Advantages :

— Allow creations or modifications of existing functions by the user, without
modifying the library source code.
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— Allow creations or modifications of existing functions by the user, without
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— Allow to specialize the library according to the user’s work.
— Allow an easy redistribution of useful functions as open source components.
= A very good way to contribute to the library.



Clmg plugins

e Advantages :

— Allow creations or modifications of existing functions by the user, without
modifying the library source code.
— Allow to specialize the library according to the user’s work.
— Allow an easy redistribution of useful functions as open source components.
= A very good way to contribute to the library.

e EXisting plugins in the default CImg package :

— Located in the directory CImg/plugins/
— cimg_matlab.h : Provide code interface between Clmg and Matlab images.

— nlmeans.h : Implementation of Non-Local Mean Filter (Buades etal).
— noise_analysis.h : Advanced statistics for noise estimation.
— toolbox3d.h : Functions to construct classical 3D meshes (cubes, sphere,...)



CImg plugins MR sz @ st

e Plug-ins variables :

— #define cimg_plugin : Add functions to the CImg<T> class.
— #define cimglist_plugin: Add functions to the CImgList<T> class.

e Using several plug-ins is possible : #define cimg_plugin ‘‘all_plugins.h’’.

// file ‘‘all_plugins.h’’

#include °‘pluginl.h’’
#include °‘plugin2.h’’
#include ‘‘plugin3.h’’

= With the plugin mechanism, Cimg is a very open framework for image processing.
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3D Object Visualization : Context

e In a lot of image processing problems, one needs to reconstruct 3D models from
raw image datasets.

— 3D from stereo images/multiple cameras.
— 3D surface reconstruction from volumetric MRI images.
— 3D surface reconstruction from points clouds (3D scanner).




3D Object Visualization : Context

— Basic and intergrated 3D meshes visualization capabilities may be useful in any
Image processing library.

e ... but we don't want to replace complete 3D rendering libraries (openGL,
Direct3D, VTK, ...).

e Clmg allows to visualize 3D objects for punctuals needs.

— Can displays a set of 3D primitives (points, lines, triangles) with given opacity.
— Can render objects with flat, gouraud or phong-like light models.

— Contains an interactive display function to view the 3D object.

— Texture mapping supported.

— No multiple lights allowed.

— No GPU acceleration.



3D Object Visualization : Live Demo

e Mean Curvature Flow.
e Image as a surface.

Toolbox3D.




3D Object Visualization : How does it works ?

e Clmg has a CImg<T>: :draw_x*() function that can draw a projection of a 3D object
Into a 2D image :

CImg<T>::draw_object3d ()



3D Object Visualization : How does it works ?

e Clmg has a CImg<T>: :draw_x*() function that can draw a projection of a 3D object
Into a 2D image :

CImg<T>::draw_object3d ()

e High-level interactive 3D object display :

CImg<T>::display_object3d()

= All 3D visualization capabilities of CImg are based on these two functions.



3D Object Visualization : How does it works ?

e Clmg has a CImg<T>: :draw_x*() function that can draw a projection of a 3D object
Into a 2D image :

CImg<T>::draw_object3d ()

e High-level interactive 3D object display :

CImg<T>::display_object3d()
= All 3D visualization capabilities of CImg are based on these two functions.

e Needed parameters :

— A CImgList<tp> of 3D points coordinates (size M).

— A CImgList<tf> of primitives (size N).

— A CImgList<T> of colors/textures (size N).

— A CImgList<to> of opacities (size N) (optional parameter).



Display a house : building point list

CImgList<float> points(9,1,3,1,1,

-50,-50,-50, // Point 0
50,-50,-50, // Point 1
50,50, -50, // Point 2
-50,50,-50, // Point 3
-50,-50,50, // Point 4
50,-50,50, // Point 5
50,50, 50, // Point 6
-50,50,50, // Point 7
0,-100,0); // Point 8

= List of 9 vectors (images 1x3) with specified coordinates.



Display a house : building primitives list

CImglist<unsigned int> primitives(6,1,4,1,1,
0,1,5,4, // Face O
3,7,6,2, // Face 1
1,2,6,5, // Face 2
0,4,7,3, // Face 3
0,3,2,1, // Face 4
4,5,6,7); // Face 5
primitives.insert(CImgList<unsigned int>(4,1,2,1,1,
0,8, // Segment 6
1,8, // Segment 7
5,8, // Segment 8
4,8)); // Segment 9

= List of 10 vectors : 6 rectangle + 4 segments.



Display a house : building colors

CImgList<unsigned char> colors;
colors.insert(6,CImg<unsigned char>::vector(255,0,255));
colors.insert (4,CImg<unsigned char>::vector(255,255,255));

e Then,.... visualize.

CImg<unsigned char>(800,600,1,3).fi11(0).

display_object3d(points,primitives,colors);




Display a transparent house : setting primitive opacities

CImgList<float> opacities;
opacities.insert(6,CImg<>::vector(0.5f));
opacities.insert(4,CImg<>::vector(1.0f));

e Then,.... visualize.

CImg<unsigned char>(800,600,1,3).£i11(0).

display_object3d(points,primitives,colors,opacities);

e Other parameters of the 3D functions allow to set :

e Light position, and ambiant light intensity.
e Camera position and focale.

e Rendering type (Gouraud, Flat, ...)

e Double/Single faces.



How to construct 3D meshes ?

e Plugin: CImg/plugins/primitives.h contains useful functions to retrieve classical
meshes.

CImg<T>::cube(), CImg<T>: :sphere(), CImg<T>::cylinder(), ...
e Library functions : CImg<T>: :marching_cubes() and CImg<T>: :marching_squares().

= Create meshes from implicit functions.

-
-y VP
T=2d




CImg<> img(‘‘volumeMRI.inr’’);

CImg<> region;

float black[1]={0};
img.draw_fil11(X0,Y0,Z0,black,region,10.0f);
(region*=-1) .blur(1.0f) .normalize(-1,1);

CImgList<> points, faces;
region.marching_cubes(0,points,faces);
CImgList<unsigned char> colors;

colors.insert(faces.size,CImg<unsigned char>::vector(200,100,20));

CImg<unsigned char>(800,600,1,3).£i11(0).
display_object3d(points,faces,colors);



CENTRE MATIONAL
DE LA RECHERCHE

Example : Segmentation of the white matter from MRI images%h ----------




Example : Isophotes with marching squares
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Shared images : Context

e Two frequent cases with undesired image copies :

1. Sometimes, we want to pass contiguous parts of an image (but not all the image)
to a function :

const CImg<> img(‘‘milla.jpg’’);
CImgList<> RG = img.get_channels(0,1).get_split(’v’);



Shared images : Context

e Two frequent cases with undesired image copies :

1. Sometimes, we want to pass contiguous parts of an image (but not all the image)
to a function :

const CImg<> img(‘‘milla.jpg’’);

CImgList<> RG = img.get_channels(0,1).get_split(’v’);

2. ..0r, we want to modify contiguous parts of an image (but not all the image) :

CImg<> img(‘‘milla.jpg’’);
img.draw_image (img.get_channel (1) .blur(3),0,0,0,1);



Shared images : Context

e Two frequent cases with undesired image copies :

1. Sometimes, we want to pass contiguous parts of an image (but not all the image)
to a function :

const CImg<> img(‘‘milla.jpg’’);
CImgList<> RG = img.get_channels(0,1).get_split(’v’);

2. ..0r, we want to modify contiguous parts of an image (but not all the image) :

CImg<> img(‘‘milla.jpg’’);

img.draw_image (img.get_channel (1) .blur(3),0,0,0,1);

= ... But we also want to avoid image copies for better performance...



Shared images

e Solution : Use shared images :
1. Replace :
const CImg<> img(‘‘milla.]jpg’’);

CImgList<> RG = img.get_channels(0,1).get_split(’v’);

by const CImg<> img(‘‘milla.jpg’’);
CImgList<> RG = img.get_shared_channels(0,1).get_split(’v’);



Shared images

e Solution : Using shared images :

2. Replace :
CImg<> img(‘‘milla.jpg’’);

img.draw_image (img.get_channel(1) .blur(3),0,0,0,1);

by CImg<> img(‘‘milla.jpg’’);
img.get_shared_channel(1) .blur(3);



Shared images

e Regions composed of contiguous pixels in memory are candidates for being
shared images :

e CImg<T>::get_shared_point[s] ()

e CImg<T>::get_shared_row[s]()

e CImg<T>::get_shared_plane[s] ()

o CImg<T>::get_shared_channel[s] ()
o CImg<T>::get_shared()

e Image attribute CImg<T>::is_shared tells about the shared state of an image.
e Shared image destructor does nothing (no memory freed).

= Warning : Never destroy an image before its shared version !!



Shared images and CImgList<T>

e Inserting a shared image Clmg<T> into a CImgList<T> makes a copy :

ClmgList<> list;
CImg<> shared = img.get_shared_channel(0);
list.insert (shared);

shared.assign(); // 0K, ’list’ not modified.

e Function CImgList<T>::insert() can be used in a way that it forces the insertion
of a shared image into a list.

CImgList<unsigned char> colors;
CImg<unsigned char> color = Clmg<unsigned char>::vector(255,0,255);
list.insert (1000, colors,list.size,true);

color.fil11(0); // ’list’ will be also modified.



Conclusion



Conclusion and Links ks s @ fnuass

e The Clmg Library eases the coding of image processing algorithms.

e For more details, please go to the official Cimg site !

http://cimg.sourceforge.net/
e A’complete’ inline reference documentation is available (generated with doxygen).

e A lot of simple examples are provided in the Clmg package, covering a lot of
common image processing tasks. It is the best information source to understand
how CImg can be used at a first glance.

e Finally, questions about Cimg can be posted In its active Sourceforge forum :
(Available from the main page).



Conclusion and Links

e Now, you know almost everything to handle complex image processing tasks with
the Clmg Library.
= You can contribute to this open source project :

— Submit bug reports and patches.
— Propose new examples or plug-ins .



Used in real world : “GREYCstoration”

e This anisotropic smoothing function has been embedded in an open-source
software : GREYCstoration .

— Distributed as a free command line program or a plug-in for GIMP.

= http://www.greyc.ensicaen.fr/” dtschump/greycstoration/
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Used in real world : DT-MRI Visualization and FiberTracking “ks ==

e DTMRI dataset visualization and fibertracking code is distributed in the Climg
package (File examples/dtmri_view.cpp, 823 lines).

Corpus Callosum Fiber Tracking



The end

Thank you for your attention.

Time for additional questions if any ..




