CENTRE MATIONAL
DE LA RECHERCHE -
SOENTIFIAUL 'f

Introduction to The Cimg Library

C++ Template Image Processing Toolbox (version 1.5)

David Tschumperlé

’fu:rmsmmuu
This document is distributed under the CC-BY-NC-SA Iicense%ﬂ%ﬁ?‘

e Document available at : http://cimg.sourceforge.net/CIlmg_slides.pdf

9commons

Attribution-NonCommercial-ShareAlike 2.5

You are free:

& to Share -- to copy, distribute, display, and perform the work

+ to Remix -- to make derivative works

Under the following conditions:

Attribution. You must atiribute the work in the manner specified
by the author or licensor.

Noncommercial. ou may not use this work for commercial
purposes.

Share Alike. If you alter, transform, or build upan this work, you
may distribute the resulting work only under a license identical to

this one.

For any reuse or distribution, you must make clear to others the license terms of this wark.

& Any of these conditions can be waived if you get permission from the copyright holder.

Outline - PART | of Il : CImg Library Overview

e Context : Image Processing with C++.

e Aim and targeted audience.

e \Why considering The Climg Library ?
e Clmg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e CimgDisplay : Image display and user interaction.

e Displaying images in windows.

Outline - PART Il of Il : More insights

e Image Filtering : Goal and principle.

e Convolution - Correlation.
e Morphomaths - Median Filter.
e Anisotropic smoothing.

e Other related functions.
e Image Loops : Using predefined macros.

e Simple loops.

e Neighborhood loops.
e The plug-in mechanism.
e Dealing with 3D objects.

e Shared images.

PART | of Il

Outline - PART | of Il : CImg Library Overview

= Context : Image Processing with C++.

e Aim and targeted audience.

e \Why considering The CIimg Library ?
e Clmg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e CimgDisplay : Image display and user interaction.

e Displaying images in windows.

Outline - PART | of Il : CImg Library Overview

e Context : Image Processing with C++.

—> Aim and targeted audience.

e \Why considering The Climg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e CimgDisplay : Image display and user interaction.

e Displaying images in windows.

Context

e Digital Images.

e On a computer, image data stored as a discrete array of values (pixels or voxels).

Context

e Acquired digital images have a lot of different types :

— Domain dimensions : 2D (static image), 2D + t (image sequence), 3D
(volumetric image), 3D + t (sequence of volumetric images), ...

Context

e Acquired digital images have a lot of different types :

— Domain dimensions : 2D (static image), 2D + t (image sequence), 3D
(volumetric image), 3D + t (sequence of volumetric images), ...

— Pixel dimensions : Pixels can be scalars, colors, N — D vectors, matrices, ...

Context

e Acquired digital images have a lot of different types :

— Domain dimensions : 2D (static image), 2D + t (image sequence), 3D
(volumetric image), 3D + t (sequence of volumetric images), ...

— Pixel dimensions : Pixels can be scalars, colors, N — D vectors, matrices, ...

— Pixel data range : depends on the sensors used for acquisition, can be N-bits
(usually 8,16,24,32...), sometimes float-valued.

Context

e Acquired digital images have a lot of different types :

— Domain dimensions : 2D (static image), 2D + t (image sequence), 3D
(volumetric image), 3D + t (sequence of volumetric images), ...

— Pixel dimensions : Pixels can be scalars, colors, N — D vectors, matrices, ...

— Pixel data range : depends on the sensors used for acquisition, can be N-bits
(usually 8,16,24,32...), sometimes float-valued.

— Type of sensor grid : Rectangular, Octagonal, ...

Context

e Acquired digital images have a lot of different types :

— Domain dimensions : 2D (static image), 2D + t (image sequence), 3D
(volumetric image), 3D + t (sequence of volumetric images), ...

— Pixel dimensions : Pixels can be scalars, colors, N — D vectors, matrices, ...

— Pixel data range : depends on the sensors used for acquisition, can be N-bits
(usually 8,16,24,32...), sometimes float-valued.

— Type of sensor grid : Rectangular, Octagonal, ...

e All these different image types are digitally stored using different file formats :

— PNG, JPEG, BMP, TIFF, TGA, DICOM, ANALYZE, ...

Context

@1Iy:W x H— [0,255]3 (b) I : W x H x D — [0, 65535]32 ©I3: W x Hx T — [0,4095]
e [/, : classical RGB color image (digital photograph, scanner, ...) (8 bits)
e [, : DT-MRI volumetric image with 32 magnetic field directions (16 bits)

e I3 : Sequence of echography images (12 or 16 bits).

Context

e Image Processing and Computer Vision aim at the elaboration of numerical
algorithms able to automatically extract features from images, interpret them and
then take decisions.

= Conversion of a pixel array to a semantic description of the image.

Is there any white pixel in this image ?

Is there any contour in this image ?

Is there any object ?

Where’s the car ?

|s there anybody driving the car ?

Context ks s @

Some observations about Image Processing and Computer Vision :

e They are huge and active research fields.
e The final goal is almost impossible to achieve !

e There have been thousands (millions?) of algorithms proposed in this field, most
of them relying on strong mathematical modeling.

e The community is varied and not only composed of very talented programmers.

= How to design a reasonable and useable programming library for such people ?

Observation

e Most of advanced image processing techniques are “type independent”.
e EX: Binarization of animage I : (2 — I' by a threshold ¢ € R.

0 i [[Z1(p)]| < e

I:Q—{0,1} suchthat YpeQ, I(p)= .
L if [I(p)|| >=¢

I : © € R? — [0, 255] I:QeR —R

Context

e Implementing an image processing algorithm should be as independent as
possible on the image format and coding.
= (Generic Image Processing Libraries :

(...), Freelmage, Deuvil, (...), OpenCV, Pandore, Cimg, Vigra, GIL, Olena, (...)

e C++is a “good” programming language for solving such a problem :

- Genericity is possible, quite elegant and flexible (template mechanism).
- Compiled code. Fast executables (good for time-consuming algorithms).
- Portable , huge base of existing code.

e Danger : Too much genericity may lead to unreadable code.

CENTRE NATIOIMAL
DE LA RECHERCHE
SOENTIFICAIE

Too much genericity... (Example 1).

-~ [£] Main Page

w-@ File List
EI[:QI Class List
@ mweg::internal::_from_float< n, ncomps, qbits, color_system =
: nhgg::internal:: to float< n, ncomps, ¢bits, color system =
vin::topo::combinatorial_map::internal::alpha< U >
mig::any< E >
cum::topo::combinatorial map::internal::any< Inf =
nirg::any_ntg< E =
mig::internal::any ntg < E >
aim::topo::combinatorial map::internal::anyfunc= U, V, Inf =
«m::iocinternal:;anything
wim:: morpho:: attr::attr_traits< ball parent _change< I, Exact > =
s:morpho:: attr::attr_traits< ball type< I, Exact = =
@im::morpho:: attr::attr_traits< box_type< I, Exact > =
@iz morpho:: attr::attr_traits< card full type< I, T, Exact = =
wlm::morpho:: attr::attr_traits< card_type< T, Exact > =
im:: morpho:: attr::attr_traits< cube type< 1, Exact = >
wlm::morpho:: attr::attr traits< dist type< I, Exact > >
@im::morpho:: attr::attr_traits= height type= T, Exact = =
gim: :morpho:: attr::attr traits< integral type< T, Exact = =

wlm:: morpho::attr::attr_traits= maxvalue_type< T, Exact = >

alm:: morpho:: attr::attr traits< minvalue type< T, Exact = >

il il oo c il e cl AR oy

mlnssmmmrhoes bt sne bt Frmdto e athooe nnmmne Thind T Twormed e ow

CENTRE NATIOIMAL
DE LA RECHERCHE
SOENTIFCAIE

Too much genericity... (Example 2).

typedef cross_vector image wiew types
= mpl::vector«<kbitss, bitslss,
mpl: :vector«<rgbh_t, omyk_ts,
kinterleavedandrlanar,

kHMonstepaAndstep,
false JJ/ falee == mutable; true == read-ocnly

=1:Cype my_views t;
typedef any image wviewsmy views T= my_any imagse view t;

$include <boost/mpl /vector.hpps
#include =gil/extension/dynamic_image /dynamic_image all .hpps

#include =gil/extension/io/jpeg _dynamic io.hpps

typedef mpl::vectore«grays_1image t, grayls image t, rgbs image t, rgblé_image L= my_img types:
any_1mage=my_1imJg types= runtime image;

dpeg read image ("input.]jpg", runtime_image) ;

grayea_1mage t gradient (get dimensicone (rnuntims imagel) ;

¥ _lumincsity gradient (const view{runtime image) , view(gradient)):
ipeg _write wiew ("X _gradient.jpg", color converted wiswegrays pixel £»(const_wisew (gradient)));

e Strictly speaking, this is more C++ stuffs (problems?) than image processing.

=- Definitely not suitable for non computer geeks !!

The CIimg Library

e An open-source C++ library aiming to simplify the development of image
processing algorithms for generic (enough) datasets (CeCILL License).

The CIimg Library

e An open-source C++ library aiming to simplify the development of image
processing algorithms for generic (enough) datasets (CeCILL License).

e Primary audience : Students and researchers working in Computer Vision and
Image Processing labs, and having standard notions of C++.

The CIimg Library

e An open-source C++ library aiming to simplify the development of image
processing algorithms for generic (enough) datasets (CeCILL License).

e Primary audience : Students and researchers working in Computer Vision and
Image Processing labs, and having standard notions of C++.

e |t defines a set of C++ classes able to manipulate and process image objects.

The CIimg Library

e An open-source C++ library aiming to simplify the development of image
processing algorithms for generic (enough) datasets (CeCILL License).

e Primary audience : Students and researchers working in Computer Vision and
Image Processing labs, and having standard notions of C++.

e It defines a set of C++ classes able to manipulate and process image objects.

e Started in late 1999, the project is now hosted on Sourceforge since December
2003 :
http://cimg.sourceforge.net/

C++ Template Image Processing Library. % sl @
) sl B iNnRIA

Outline - PART | of Il : CImg Library Overview

e Context : Image Processing with C++.

e Aim and targeted audience.

— Why considering The Cimg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e CimgDisplay : Image display and user interaction.

e Displaying images in windows.

Main characteristics

Clmg is lightweight

o Total size of the full Cimg (.zip) package : approx. 12.5 Mb.

Main characteristics

Clmg is lightweight

o Total size of the full Cimg (.zip) package : approx. 12.5 Mb.

e All the library is contained in a single header file CImg.h, that must be included in
your C++ source :

#include ‘““CImg.h”’ // Just do that...

using namespace cimg_library; // ...and you can play with the library

Main characteristics

Clmg is lightweight

o Total size of the full Cimg (.zip) package : approx. 12.5 Mb.

e All the library is contained in a single header file CImg.h, that must be included in
your C++ source :
#include ‘““CImg.h”’ // Just do that...
using namespace cimg_library; // ...and you can play with the library

e The library itself only takes 2.2Mb of sources (approximately 45000 lines).

e The library package contains the file Cimg.h as well as documentation, examples
of use, and additional plug-ins.

Main characteristics

Clmg is lightweight

e What ? a library defined in a single header file ?

— Simplicity “a la STL.

Main characteristics

Clmg is lightweight

e What ? a library defined in a single header file ?

— Simplicity “a la STL”.

— Used template functions and structures know their type only during the
compilation phase :
= No relevance in having pre-compiled objects (.cpp—.0).

Main characteristics

Clmg is lightweight

e What ? a library defined in a single header file ?

— Simplicity “a la STL”.

— Used template functions and structures know their type only during the
compilation phase :
= No relevance in having pre-compiled objects (.cpp—.0).

— Why not several headers (one for each class) ?
= Interdependence of the classes : all headers would be always necessary.

Main characteristics

Clmg is lightweight

e What ? a library defined in a single header file ?

— Simplicity “a la STL”.

— Used template functions and structures know their type only during the
compilation phase :
= No relevance in having pre-compiled objects (.cpp—.0).

— Why not several headers (one for each class) ?
= Interdependence of the classes : all headers would be always necessary.

— Only used functions are actually compiled :
= Small generated executables.

Main characteristics

Clmg is lightweight

e What ? a library defined in a single header file ?

— Simplicity “a la STL.

— Used template functions and structures know their type only during the
compilation phase :
= No relevance in having pre-compiled objects (.cpp—.0).

— Why not several headers (one for each class) ?
= Interdependence of the classes.

— Only used functions are actually compiled :
= Small generated executables.

e Drawback : Compilation time and needed memory important when optimization
flags are set.

Main characteristics

Clmg is (sufficiently) generic :

e CIimg implements static genericity by using the C++ template mechanism.

e One template parameter only : the type of the image pixel.

Main characteristics Gk sz @ A=

Clmg is (sufficiently) generic :

e CIimg implements static genericity by using the C++ template mechanism.

e One template parameter only : the type of the image pixel.

e Cimg defines an image class that can handle hyperspectral volumetric (i.e 4D)
Images of generic pixel types.

Main characteristics Gk sz @ A=

Clmg is (sufficiently) generic :

e CIimg implements static genericity by using the C++ template mechanism.

e One template parameter only : the type of the image pixel.

e Cimg defines an image class that can handle hyperspectral volumetric (i.e 4D)
Images of generic pixel types.

e CIimg defines an image list class that can handle temporal image sequences.

Main characteristics ks s @ A=

Clmg is (sufficiently) generic :

e CIimg implements static genericity by using the C++ template mechanism.
e One template parameter only : the type of the image pixel.

e Cimg defines an image class that can handle hyperspectral volumetric (i.e 4D)
Images of generic pixel types.

e CIimg defines an image list class that can handle temporal image sequences.

e ... But, Cimg is limited to images having a rectangular grid, and cannot handle
Images having more than 4 dimensions.

Main characteristics Gk sz @ A=

Clmg is (sufficiently) generic :

e CIimg implements static genericity by using the C++ template mechanism.
e One template parameter only : the type of the image pixel.

e Cimg defines an image class that can handle hyperspectral volumetric (i.e 4D)
Images of generic pixel types.

e CIimg defines an image list class that can handle temporal image sequences.
e ... But, Cimg is limited to images having a rectangular grid, and cannot handle

Images having more than 4 dimensions.

= Clmg covers actually 99% of the image types found in real world applications.

Main characteristics

Clmg is multi-platform

e It does not depend on many libraries.
It can be compiled only with existing system libraries.

Main characteristics

Clmg is multi-platform

e It does not depend on many libraries.
It can be compiled only with existing system libraries.

e Advanced tools or libraries may be used by Cimg (ImageMagick, XMedcon, libpng,
libjpeg, libtiff, libfftw3...), these tools being freely available for any platform.

Main characteristics

Clmg is multi-platform

e It does not depend on many libraries.
It can be compiled only with existing system libraries.

e Advanced tools or libraries may be used by Cimg (ImageMagick, XMedcon, libpng,
libjpeg, libtiff, libfftw3...), these tools being freely available for any platform.

e Successfully tested platforms : Win32, Linux, Solaris, *BSD, Mac OS X.

e Itis also “multi-compiler” : g++, Visual Studio .NET, Intel ICL, Clang++.

Main characteristics

And most of all, Cimg is very simple to use

e Only 1 single file to include.

Main characteristics

And most of all, Cimg is very simple to use

e Only 1 single file to include.

e Only 4 C++ classes to know :
CImg<T>, CImgList<T>, CImgDisplay, CImgException.

Main characteristics

And most of all, Cimg is very simple to use

e Only 1 single file to include.

e Only 4 C++ classes to know :
CImg<T>, CImgList<T>, CImgDisplay, CImgException.

e Very basic low-level architecture, simple to apprehend (and to hack if necessary!).

Main characteristics

And most of all, Cimg is very simple to use

e Only 1 single file to include.

e Only 4 C++ classes to know :
CImg<T>, CImgList<T>, CImgDisplay, CImgException.

e Very basic low-level architecture, simple to apprehend (and to hack if necessary!).

e Enough genericity and library functions, allowing complex image processing tasks.

Main characteristics

And most of all, Cimg is very simple to use

e Only 1 single file to include.

e Only 4 C++ classes to know :
CImg<T>, CImgList<T>, CImgDisplay, CImgException.

e Very basic low-level architecture, simple to apprehend (and to hack if necessary!).
e Enough genericity and library functions, allowing complex image processing tasks.

.... and extensible :

e Simple plug-in mechanism to easily add your own functions to the library core
(without modifying the file CImg.h of course).

Hello World step by step

#include "CImg.h"

using namespace cimg_library,

int main(int argc, char **argv) {

return O;

uuuuuuuuuuuu

Hello World step by step T

#include "CImg.h"

using namespace cimg_library,

int main(int argc, char **argv) {

CImg<unsigned char> img(300,200,1,3);

return O;

uuuuuuuuuuuu

Hello World step by step T

#include "CImg.h"

using namespace cimg_library,

int main(int argc, char **argv) {

CImg<unsigned char> img(300,200,1,3);
img.£i11(32);

return O;

Hello World step by step T

#include "CImg.h"

using namespace cimg_library,

int main(int argc, char **argv) {
CImg<unsigned char> img(300,200,1,3);
img.£i11(32);

img.noise(128);

return O;

Hello World step by step o

#include "CImg.h"

using namespace cimg_library,

int main(int argc, char **argv) {
CImg<unsigned char> img(300,200,1,3);
img.£i11(32);
img.noise(128);

img.blur(2,0,0);

return O;

Hello World step by step o G

#include "CImg.h"

using namespace cimg_library,
int main(int argc, char **argv) {

CImg<unsigned char> img(300,200,1,3);
img.fi11(32);

img.noise(128);

img.blur(2,0,0);

const unsigned char white[] = { 255,255,255 };
img.draw_text (80,80, "Hello World",white,0,32);

return O;

Hello World step by step o G

#include "CImg.h"

using namespace cimg_library,
int main(int argc, char **argv) {

CImg<unsigned char> img(300,200,1,3);
img.fi11(32);

img.noise(128);

img.blur(2,0,0);

const unsigned char white[] = { 255,255,255 };
img.draw_text (80,80, "Hello World",white,0,32);
img.display();

return O;

Hello World step by step

Cimg<unsigned char=

Hello World

Hello World step by step : animated kS smmm @ b

#include "CImg.h"

using namespace cimg_library,
int main(int argc, char *x*argv) A

const CImg<unsigned char> img =
CImg<unsigned char>(300,200,1,3).£1i11(32) .noise(128) .blur(2,0,0).
draw_text(80,80,"Hello World",CImg<unsigned char>::vector(255,255,255) .ptr(),0,32);

CImgDisplay disp(img,"Moving Hello World",0);
for (float t=0; !'disp.is_closed(); t+=0.04) {
CImg<unsigned char> res(img);
cimg_forYC(res,y,v)
res.get_shared_row(y,0,v).shift((int) (40*std: :sin(t+y/50.0)),0,0,0,2);
disp.display(res) .wait(20);
if (disp.is_resized()) disp.resize();

}

return O;

nnnnnnnnnn
DE LA RECHERS)
sor

Another example : Computing gradient norm of a 3D volumetricg‘s '''''''' |

o Let:Q € R3 — R, compute

aI* [oI\® [OI\’
wee 191 = (5) + (5) + (&)

e Code:

#include °‘CImg.h’’

using namespace cimg_library,

int main(int argc, char *x*argv) A
const CImg<float> img(‘‘brain_irm3d.hdr’’);
const CImgList<float> grad = img.get_gradient(‘‘xyz’’);
CImg<float> norm = (grad[0].pow(2) + grad[l].pow(2) + grad[2].pow(2));
norm.sqrt() .get_normalize(0,255) .save(‘ ‘brain_gradient3d.hdr’’);

return O;

Another example : Computing gradient norm of a 3D volumetricks um@ 5

CENTRE MATIONAL
DE LA RECHERCHE
1T

Live Demo ! e

e Let see what we can do with this library.

Overall Library Structure

e The whole library classes and functions are defined in the cimg_library::
namespace.

Overall Library Structure

e The whole library classes and functions are defined in the cimg_library::
namespace.

e The library is composed of only four C++ classes :

— CImg<T>, represents an image with pixels of type T.

Overall Library Structure

e The whole library classes and functions are defined in the cimg_library::
namespace.
e The library is composed of only four C++ classes :

— CImg<T>, represents an image with pixels of type T.
— ClmgList<T> , represents a list of images CImg<T>.

Overall Library Structure

e The whole library classes and functions are defined in the cimg_library::
namespace.

e The library is composed of only four C++ classes :

— CImg<T>, represents an image with pixels of type T.
— ClmgList<T> , represents a list of images CImg<T>.
— ClmgDisplay , represents a display window.

Overall Library Structure

e The whole library classes and functions are defined in the cimg_library::
namespace.

e The library is composed of only four C++ classes :

— CImg<T>, represents an image with pixels of type T.
— ClmgList<T> , represents a list of images CImg<T>.

— ClmgDisplay , represents a display window.

— ClmgException , used to throw library exceptions.

Overall Library Structure

e The whole library classes and functions are defined in the cimg_library::
namespace.

e The library is composed of only four C++ classes :

— CImg<T>, represents an image with pixels of type T.
— ClmgList<T> , represents a list of images CImg<T>.

— ClmgDisplay , represents a display window.

— ClmgException , used to throw library exceptions.

e A sub-namespace cimg_library::cimg:: defines some low-level library functions
(including some useful ones as
rand(), grand(), min<T>(), max<T>(), abs<T>(), sleep(), etc...).

Overall Library Structure

cimg_library::
cimg:: Clmg<T> ClmgList<T>
Low-level functions Image Image List
ClimgException || CimgDisplay
Error handling Display Window

Clmg methods MR sz @ st

e All Cimg classes incorporate two different kinds of methods :

— Methods which act directly on the instance object and modify it. These methods
returns a reference to the current instance, so that writting function pipelines is
possible :

CImg<>(‘‘toto.jpg’’) .blur(2) .mirror(’y’) .rotate(45) .save(‘ ‘tutu.jpg’’);

Clmg methods MR sz @ st

e All Cimg classes incorporate two different kinds of methods :

— Methods which act directly on the instance object and modify it. These methods
returns a reference to the current instance, so that writting function pipelines is
possible :

CImg<>(‘‘toto.jpg’’) .blur(2) .mirror(’y’) .rotate(45) .save(‘ ‘tutu.jpg’’);

— Other methods return a modified copy of the instance. These methods start
with get_*() :

CImg<> img(‘‘toto.jpg’’);
Clmg<> img2 = img.get_blur(2); // ’img’ is not modified
CImg<> img3 = img.get_rotate(20).blur(3); // ’img’ is not modified

Clmg methods o UE-= @

e All Cimg classes incorporate two different kinds of methods :

— Methods which act directly on the instance object and modify it. These methods
returns a reference to the current instance, so that writting function pipelines is
possible :

CImg<>(‘‘toto.jpg’’) .blur(2) .mirror(’y’) .rotate(45) .save(‘ ‘tutu.jpg’’);

— Other methods return a modified copy of the instance. These methods start
with get_x*() :

CImg<> img(‘‘toto.jpg’’);

CImg<> img2 = img.get_blur(2); // ’img’ is not modified
CImg<> img3 = img.get_rotate(20) .blur(3); // ’img’ is not modified

= Almost all CiImg methods are declined into these two versions

Outline - PART | of Il : CImg Library Overview

e Context : Image Processing with C++.

e Aim and targeted audience.

e Why considering The Clmg Library ?
= CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e ClmgDisplay : Image display and user interaction.

e Displaying images in windows.

Cimg<T> : Overview

e This is the main class of the Cimg Library. It has a single template parameter T.

e A CImg<T> represents an image with pixels of type T (default template parameter
IS T=float). Supported types are the C/C++ basic types : bool, unsigned char,

char, unsigned short, short, unsigned int, int, float, double, ...

Cimg<T> : Overview

e This is the main class of the Cimg Library. It has a single template parameter T.

e A CImg<T> represents an image with pixels of type T (default template parameter
IS T=float). Supported types are the C/C++ basic types : bool, unsigned char,

char, unsigned short, short, unsigned int, int, float, double, ...

e Animage has always 3 spatial dimensions (width, height,depth)+ 1 hyperspectral
dimension (dim) : It can represent any data from a scalar 1D signal to a 3D volume
of vector-valued pixels.

Cimg<T> : Overview

e This is the main class of the Cimg Library. It has a single template parameter T.

e A CImg<T> represents an image with pixels of type T (default template parameter
IS T=float). Supported types are the C/C++ basic types : bool, unsigned char,

char, unsigned short, short, unsigned int, int, float, double, ...

e Animage has always 3 spatial dimensions (width, height,depth)+ 1 hyperspectral
dimension (dim) : It can represent any data from a scalar 1D signal to a 3D volume
of vector-valued pixels.

e Image processing algorithms are methods of CImg<T> (% STL) :

blur(), resize(), convolve(), erode(), load(), save()....

e Method implementation aims to handle the most general case (3D volumetric
hyperspectral images).

Clmg<T> : Low-level Architecture (for hackers!)

e The structure CImg<T> is defined as :

template<typename T> struct Clmg {
unsigned int _width;
unsigned int _height;
unsigned int _depth;
unsigned int _dim;
bool _1i1s_shared;
Tx _data;

Clmg<T> : Low-level Architecture (for hackers!)

e The structure CImg<T> is defined as :

template<typename T> struct Clmg {
unsigned int _width;
unsigned int _height;
unsigned int _depth;
unsigned int _dim;
bool _1i1s_shared;
Tx _data;
I

e A CImg<T>image is always entirely stored in memory.

e A CImg<T>Is independent : it has its own pixel buffer.

Clmg<T> : Low-level Architecture (for hackers!)

e The structure CImg<T> is defined as :

template<typename T> struct CImg {
unsigned int _width;
unsigned int _height;
unsigned int _depth;
unsigned int _dim;
bool _1i1s_shared;
Tx data;
I

e A CImg<T>image is always entirely stored in memory.
e A CImg<T>is independent : it has its own pixel buffer most of the time.

e Clmg member functions (destructor, constructors, operators,...) handle memory
allocation/desallocation efficiently.

Clmg<T> : Memory layout (for hackers!)

template<typename T> struct Clmg {
unsigned int _width;
unsigned 1nt _height;
unsigned int _depth;
unsigned int _dim;
bool _1s_shared;
Tx _data;
b

e Pixel values are not stored in a typical “‘RGBRGBRGBRGBRGB” order.

e Pixel values are stored first along the X-axis, then the Y-axis, then the Z-axis, then
the C-axis :

R(0,0) R(1,0) ... R(W-1,0) ... R(0,1) R(1,1) ... R(W-1,1) ... R(0,H-1) R(1,H-1)
... R(W-1,H-1) ... G(0,0) ... G(W-1,H-1) ... B(0,0) ... B(W-1,H-1).

Outline - PART | of Il : CImg Library Overview

e Context : Image Processing with C++.

e Aim and targeted audience.

e \Why considering The Climg Library ?
e CImg<T> : A class for image manipulation.

—> Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e CimgDisplay : Image display and user interaction.

e Displaying images in windows.

Clmg<T> : Constructors (1)

e Default constructor, constructs an empty image.
CImg<T>();

e No memory allocated in this case, images dimensions are zero.
e Useful to declare an image without allocating its pixel values.

#include ‘CImg.h’’

using namespace cimg_library,

int main() {
CImg<unsigned char> img_8bits;
CImg<unsigned short> img_16bits;
CImg<float> img_float;

return O;

Clmg<T> : Constructors (2)

e Constructs a 4D image with specified dimensions. Omitted dimensions are set
to 1 (default parameter).
CImg<T>(unsigned int, unsigned int, unsigned int, unsigned int);

#include ‘‘Clmg.h’’

using namespace cimg_library,;

int main() A
CImg<float> img(100,100); // 2D scalar image.
CImg<unsigned char> img2(256,256,1,3); // 2D color image.
CImg<bool> img3(128,128,128); // 3D scalar image.
CImg<short> img4(64,64,32,16); // 3D hyperspectral image (16 bands).

return O;

e No initialization of pixel values is performed. Can be done with :

CImg<T>(unsigned int, unsigned int, unsigned int, unsigned int, const T&);

Clmg<T> : Constructors (3) DR, o

e Create an image by reading an image from the disk (format deduced by the
filename extension).
CImg<T>(const char *filename);

#include ‘CImg.h’’

using namespace cimg_library,

int main() {
CImg<unsigned char> img(‘‘nounours.jpg’’);
CImg<unsigned short> img2(‘‘toto.png’’);
CImg<float> img3(‘ ‘toto.png’’);

return O;

e Pixel data of the file format are converted (static cast) to the specified template
parameter.

Clmg<T> : In-place constructors

e CImg<T>% assign(...)

Each constructor has an in-place version with same parameters.

CImg<float> img,
img.assign(‘ ‘toto.jpg’’);
img.assign(256,256,1,3,0);

img.assign();

e This principle is extended to the other Cimg classes.

CImgList<float> list;
list.assign(imgl,img2,img3) ;
CImgDisplay disp;
disp.assign(list,’’List display’’);

Clmg<T> : Access to image data informations

e Get the dimension along the X,Y,Z or C-axis (width, height, depth or channels).
int width() const;

int W = img.width(), H = img.height(), D = img.depth(), S = img.spectrum();

Clmg<T> : Access to image data informations

e Get the dimension along the X,Y,Z or C-axis (width, height, depth or channels).
int width() const;

int W = img.width(), H = img.height(), D = img.depth(), S = img.spectrum();

e Get the pixel value at specified coordinates. Omited coordinates are set to O.

T& operator () (unsigned int, unsigned int, unsigned int, unsigned int);

unsigned char R = img(x,y), G = img(x,y,0,1), B = img(x,y,2);
float val = volume(x,y,z,v);

img(x,y,z) = x*y;

(Out-of-bounds coordinates are not checked !)

Clmg<T> : Access to image data informations

e Get the dimension along the X,Y,Z or C-axis (Width, Height, Depth or Channels).
int width() const;

int W = img.width(), H = img.height(), D = img.depth(), S = img.spectrum();
e Get the pixel value at specified coordinates. Omited coordinates are set to O.
T& operator () (unsigned int, unsigned int, unsigned int, unsigned int);

unsigned char R = img(x,y), G = img(x,y,0,1), B = img(x,y,2);
float val = volume(x,y,z,V);

img(x,y,z) = X*y;
(Out-of-bounds coordinates are not checked !)
e Getthe pixel value at specified sub-pixel position, using bicubic interpolation. Out-

of-bounds coordinates are checked.

float cubic_pix2d(float, float, unsigned int, unsigned int);

float val = img.get_cubic_pix2d(x-0.5f,y-0.5f);

Clmg<T> : Copies and assignments

e Construct an image by copy. Perform static pixel type cast if needed.
template<typename t> CImg<T>(const CImg<t>& img);

CImg<float> img_float(img_double);

Clmg<T> : Copies and assignments

e Construct an image by copy. Perform static pixel type cast if needed.
template<typename t> CImg<T>(const CImg<t>& img);

CImg<float> img_float(img_double);

e Assignement operator. Replace the instance image by a copy of img.
template<typename t> CImg<T>& operator=(const Clmg<t>& img);

CImg<float> 1img;

CImg<unsigned char> img2(‘‘toto.jpg’’), img3(256,256) ;
img = 1mg2;

img = 1mg3;

e Modifying a copy does not modify the original image (own pixel buffer).

Clmg<T> . Math operators and functions

e Most of the usual math operators are defined : +,-,*,/,+=,-=, . ..

CImg<float> img(‘‘toto.jpg’’), dest;
dest =(2*img+5) ;

dest+=1img;

Clmg<T> . Math operators and functions

e Most of the usual math operators are defined : +,-,*,/,+=,-=, . ..

CImg<float> img(‘‘toto.jpg’’), dest;
dest =(2*img+5) ;

dest+=1img;
e Operators always try to return images with the best datatype.

CImg<unsigned char> img(‘‘toto.jpg’’);
CImg<float> dest;

dest = 1mgx0.1f;

1mg*=0.1f;

Clmg<T> . Math operators and functions

e Most of the usual math operators are defined : +,-,*,/,+=,-=, ...

CImg<float> img(‘‘toto.jpg’’), dest;
dest =(2*img+5) ;

dest+=1img;
e Operators always try to return images with the best datatype.

CImg<unsigned char> img(‘‘toto.jpg’’);
CImg<float> dest;

dest = 1mgx0.1f;

1mg*=0.1f;

e Usual math functions are also defined : sqrt (), cos(), pow()...

img.pow(2.5);
res = img.get_pow(2.5);
res = img.get_cos() .pow(2.5);

Clmg<T> . Matrices operations

e The *x and / operators corresponds to a matrix product/division !

CImg<float> A(3,3), v(1,3);
CImg<float> res = Axv,;

e Use CImg<T>::mul() and CImg<T>::div() for pointwise operators.

CImg<T> : Matrices operations g LE @ A=

e The *x and / operators corresponds to a matrix product/division !

CImg<float> A(3,3), v(1,3);
CImg<float> res = Axv,;

e Use CImg<T>::mul() and CImg<T>::div() for pointwise operators.

e Usual matrix functions and transformations are available in Cimg : determinant,
SVD, eigenvalue decomposition, inverse, ...

CImg<float> A(10,10), v(1,10);

const float determinant = A.det();

CImg<float> pseudo_inv =
((AxA.get_transpose()).inverse())*A.get_transpose();
CImg<float> pseudo_inv2 = A.get_pseudoinverse();

Clmg<T> : Matrices operations Ry @ L=

e The * and / operators corresponds to a matrix product/division !

CImg<float> A(3,3), v(1,3);
CImg<float> res = Axv,;

e Use CImg<T>::mul() and CImg<T>::div() for pointwise operators.

e Usual matrix functions and transformations are available in Cimg : determinant,
SVD, eigenvalue decomposition, inverse, ...

CImg<float> A(10,10), v(1,10);

const float determinant = A.det();

CImg<float> pseudo_inv =
((AxA.get_transpose()).inverse())*A.get_transpose();
CImg<float> pseudo_inv2 = A.get_pseudoinverse();

e Warning : Matrices are viewed as images, so first indice is the column
number, second Is the line number : A;; =A(,1)

Clmg<T> : Image destruction

e Image destruction is done in the “CImg() method.
e Used pixel buffer memory (if any) is automatically freed by the destructor.
e Destructor is automatically called at the end of a block.

e Memory deallocation can be forced by the assign() function.

CImg<float> img(10000,10000); // Need 4%10000~2 bytes = 380 Mo
float det = img.det();

// We won’t use img anymore. ..

img.assign();

// Equivalent to :
img = CImg<float>();

Outline - PART | of Il : CImg Library Overview

e Context : Image Processing with C++.

e Aim and targeted audience.

e \Why considering The Climg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.

—> Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.

e Basic manipulation functions.

e CimgDisplay : Image display and user interaction.

e Displaying images in windows.

Clmg<T> : Image manipulation

e f111() : Fill an image with one or several values.

CImg<> img(256,256), vector(1,6);
img.£i11(0);
vector.fil11(1,2,3,4,5,6);

e Apply basic global transformations on pixel values.
normalize(), cut(), quantize(), threshold().

CImg<float>
img(‘‘toto. jpg’) ;
img.quantize(16);
img.normalize(0,1);
img.cut(0.2f,0.8f);
img.threshold(0.5f);

img.normalize (0,255);

Clmg<T> : Image manipulation

e rotate() : Rotate an image with a given angle.
CImg<> img(‘‘milla.png’’);
img.rotate(30);

e resize() : Resize an image with a given size.
CImg<> img(‘‘mini.jpg’’);
img.resize(-300,-300); // -300 = 3007

= Border conditions and interpolation types can be chosen by the user.

Cimg<T> : Image manipulation ORs) @ i[-_-i'i"'.".

e get_crop() : Get a sub—image of the instance image.

CImg<> img(256,256) ;
img.get_crop(0,0,128,128); // Get the upper-left half image

e Color space-conversions : RGBtoYUV(), RGBtoLUT(), RGBtoHSV(),... and
Inverse transformations.

e Filtering : blur(), convolve(), erode(), dilate(), FFT(), deriche(),....

e In the reference documentation, functions are grouped by themes....

http://cimg.sourceforge.net/reference/

Cimg<T> : Image manipulation

#include ‘‘Clmg.h’’

using namespace cimg_library,

int main() {
CImg<unsigned char> img(‘‘milla.jpg’’);
img.blur(l).crop(15,52,150,188) .dilate(10) .mirror(’x’);
img.save(‘ ‘result.png’’);

return O;

Outline - PART | of Il : CImg Library Overview

e Context : Image Processing with C++.

e Aim and targeted audience.

e \Why considering The Climg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

— Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.

e CimgDisplay : Image display and user interaction.

e Displaying images in windows.

Clmg<T> : Drawing functions

e Clmg proposes a lot of functions to draw features in images.
= Points, lines, circles, rectangles, triangles, text, vector fields, 3D objects, ...
e All drawing function names begin with draw_x ().

e Features are drawn directly on the instance image (so there are not const).

Jawbreaker

Clmg<T> : Drawing functions

e All drawing functions work the same way : They need the instance image, feature
coordinates, and a color (eventual other optional parameters can be set).

Clmg<T> : Drawing functions

e All drawing functions work the same way : They need the instance image, feature
coordinates, and a color (eventual other optional parameters can be set).

e They return a reference to the instance image, so they can be pipelined.

Clmg<T> : Drawing functions

e All drawing functions work the same way : They need the instance image, feature
coordinates, and a color (eventual other optional parameters can be set).

e They return a reference to the instance image, so they can be pipelined.

e They clip objects that are out of image bounds.

Clmg<T> : Drawing functions

e All drawing functions work the same way : They need the instance image, feature
coordinates, and a color (eventual other optional parameters can be set).

e They return a reference to the instance image, so they can be pipelined.
e They clip objects that are out of image bounds.
e EX: CImg& draw_line(int,int,int,int,T*);

CImg<unsigned short> img(256,256,1,5); // hyperspectral image of ushort
unsigned short color[5] =1 0,8,16,24,32 }; // color used for the drawing
img.draw_line(x-2,y-2,x+2,y+2,color) .

draw_line(x-2,y+2,x+2,y-2,color) .

draw_circle(x+10,y+10,5,color);

Clmg<T> : Drawing functions

All drawing functions work the same way : They need the instance image, feature
coordinates, and a color (eventual other optional parameters can be set).

They return a reference to the instance image, so they can be pipelined.
They clip objects that are out of image bounds.
EX: CImg& draw_line(int,int,int,int,T*);

CImg<unsigned short> img(256,256,1,5); // hyperspectral image of ushort
unsigned short color[5] =1 0,8,16,24,32 }; // color used for the drawing
img.draw_line(x-2,y-2,x+2,y+2,color) .

draw_line(x-2,y+2,x+2,y-2,color) .

draw_circle(x+10,y+10,5,color);

CImg<T>::draw_object3d() can draw 3D objects (mini Open-GL!)

Clmg<T> : Plasma ball (source code)

e The following code draws a “plasma ball” from scratch :

CImg<unsigned char> img(512,512,1,3,0);
for (float alpha=0, beta=0; beta<100; alpha+=0.21f, beta+=0.18f) {
const float
ca = std::cos(alpha), cb = std::cos(beta),
sa = std::sin(alpha), sb = std::sin(beta);
img.draw_line(256+200*ca*sa,256+200*cb*sa,
256+200*saxsb,256+200*sb*ca,
CImg<unsigned char>::vector(alpha*x256,beta*x256,128) .
ptr(),0.5f);
+
const unsigned char white[3] = { 255,255,255 }, bluel3] = { 16,32,128 };
img.draw_circle(256,256,200,white,1.0f, 0U) .draw_£fi11(0,0,blue);
for (int radius = 60; radius>0; --radius)

img.draw_circle(340,172,radius,white,0.02f) ;

CImg<T> : Plasma ball (result) o UE-=

Outline - PART | of Il : CImg Library Overview

e Context : Image Processing with C++.

e Aim and targeted audience.

e Why considering The Clmg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
= ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e ClmgDisplay : Image display and user interaction.

e Displaying images in windows.

ClmgList<T> : Overview

A CImgList<T> represents an array of CImg<T>.

Useful to handle a sequence or a collection of images.

Here also, the memory is not shared by other CImgList<T> or CImg<T> objects.
Looks like a std: :vector<CImg<T> >, specialized for image processing.

Can be used as a flexible and ordered set of images.

Outline - PART | of Il : CImg Library Overview

e Context : Image Processing with C++.

e Aim and targeted audience.

e \Why considering The Climg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
—> Basic manipulation functions.

e CimgDisplay : Image display and user interaction.

e Displaying images in windows.

ClmgList<T> : Main functions

// Create a list of 20 color images 100x100.
CImgList<float> list(20,100,100,1,3);

// Insert two images at the end of the list.
list.insert (CImg<float>(50,50));
list.insert (CImg<unsigned char>(‘‘milla.ppm’’));

// Remove the second image from the list.

list.remove(l);

// Resize the bth image of the list.
CImg<float> &ref = list[4];
ref.resize(50,50);

e Lists can be saved (and loaded) as .cimg files (simple binary format with ascii
header).

ClmgList<T>: .cimg files

e Functions CImgList<T>::load_cimg() and CImgList<T>::save_cimg() allow to
load/save portions of . cimg image files.

e Single images (CImg<T> class) can be also loaded/saved into .cimg files.

e Useful to work with big image files, video sequences or image collections.

Outline - PART | of Il : CImg Library Overview

e Context : Image Processing with C++.

e Aim and targeted audience.

e Why considering The Clmg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
= ClmgDisplay : Image display and user interaction.

e Displaying images in windows.

Outline - PART | of Il : CImg Library Overview

e Context : Image Processing with C++.

e Aim and targeted audience.

e \Why considering The Climg Library ?
e CImg<T> : A class for image manipulation.

e Image construction, data access, math operators.
e Basic image transformations.

e Drawing things on images.
e ClmgList<T> : Image collection manipulation.
e Basic manipulation functions.
e CimgDisplay : Image display and user interaction.

—> Displaying images in windows.

CimgDisplay : Overview

e A CImgDisplay allows to display CImg<T> or CImgl<T> instances in a window, and
can handle user events that may happen in this window (mouse, keyboard, ...)

CimgDisplay : Overview

e A CImgDisplay allows to display CImg<T> or CImgl<T> instances in a window, and
can handle user events that may happen in this window (mouse, keyboard, ...)

e The construction of a CImgDisplay opens a window.

CimgDisplay : Overview

e A CImgDisplay allows to display CImg<T> or CImgl<T> instances in a window, and
can handle user events that may happen in this window (mouse, keyboard, ...)

e The construction of a CImgDisplay opens a window.

e The destruction of a CImgDisplay closes the corresponding window.

CimgDisplay : Overview

e A CImgDisplay allows to display CImg<T> or CImgl<T> instances in a window, and
can handle user events that may happen in this window (mouse, keyboard, ...)

e The construction of a CImgDisplay opens a window.
e The destruction of a CImgDisplay closes the corresponding window.

e The display of an image in a CImgDisplay is done by a call to the
CImgDisplay: :display() function.

CimgDisplay : Overview

e A CImgDisplay allows to display CImg<T> or CImgl<T> instances in a window, and
can handle user events that may happen in this window (mouse, keyboard, ...)

e The construction of a CImgDisplay opens a window.
e The destruction of a CImgDisplay closes the corresponding window.

e The display of an image in a CImgDisplay is done by a call to the
CImgDisplay: :display() function.

e A CImgDisplay has its own pixel buffer. It does not store any references to the
CImg<T> or CImgList<T> passed at the last call to CImgDisplay: :display().

CimgDisplay : Handling events o Ub @ A=

e When opening the window, an event-handling thread is created.

e This thread automatically updates volatile fields of the CImgDisplay instance,
when events occur in the corresponding window :

— Mouse events : mouse_x(), mouse_y () and button().
— Keyboard event : key ().
— Window events : is_resized(), is_closed() and is_moved().

e Only one thread is used to handle display events of all opened CImgDisplay.
e This thread is killed when the last display window is destroyed.
e The CImgDisplay class is fully coded both for GDI32 and X11 graphics libraries.

e Display automatically handles image normalization to display float-valued images
correctly.

ClmgDisplay : Useful functions

e Construction :
CImgDisplay displ(img, ‘ ‘My first display’’);
CImgDisplay disp2(640,400,’’My second display’’);
e Display/Refresh image:
img.display(disp);
disp.display (img);
e Handle events :
if (disp.key(O)==cimg: :keyQ) { ... }
if (disp.is_resized()) disp.resize();

if (disp.mouse_x()>20 && disp.mouse_y()<40) { ... }
disp.wait () ;

e Temporize (for animations) : disp.wait(20) ;

CimgDisplay : Example of using CImgDisplay

#include "Clmg.h"
using namespace cimg_library;
int main() {
CImgDisplay disp(256,256,"My Display");
while (!disp.is_closed()) {
if (disp.button&l) {
const int x = disp.mouse_x(), y = disp.mouse_y();
CImg<unsigned char> img(disp.width(),disp.height());
unsigned char col[1] = {255};
img.£i11(0) .draw_circle(x,y,40,col) .display(disp);
b
if (disp.button()&2) disp.resize(-90,-90);
if (disp.is_resized()) disp.resize();
disp.wait();
s

return O;

CENTRE MATIONAL
DE LA RECHERCHE

A more complete example of using CImg<T> (14 C++ lines) N UE

CImg<> img = CImg<>("img/milla.ppm") .normalize(0,1);

CImgl<unsigned char> visu(img*255, CImg<unsigned char>(512,300,1,3,0));

const unsigned char yellow[3] = {255,255,0}, blue[3]={0,155,255}, blue2[3]={0,0,255}, blue3[3]={0,0,155},

white[3]={255,255,255};

CImgDisplay disp(visu,"Image and Histogram (Mouse click to set the Gamma correction)",0);

for (double gamma=1;'disp.closed() && disp.key()!=cimg::keyQ && disp.key()!=cimg::keyESC;) {
cimg_forXYZC(visul[0],x,y,z,k) visul[0](x,y,z,k) = (unsigned char) (pow((double)img(x,y,z,k),1.0/gamma)*256) ;
const CImg<> hist = visu[0].get_histogram(50,0,255);
visu[1].£i11(0) .draw_text (50,5, "Gamma = J%g",white,NULL,1,gamma) .
draw_graph(hist,yellow,1,20000,0) .draw_graph(hist,white,2,20000,0);

const int xb = (int) (50+gammax*150) ;
visul[l] .draw_rectangle(51,21,xb-1,29,blue2) .draw_rectangle(50,20,xb,20,blue) .draw_rectangle (xb,20,xb,30,blue) ;

visu[1l] .draw_rectangle(xb,30,50,29,blue3) .draw_rectangle(50,20,51,30,blue3);
if (disp.button() && disp.mouse_x()>=img.width()+50 && disp.mouse_x()<=img.width()+450) gamma = (disp.mouse_x()-img.width()-50) /1!

disp.resize(disp) .display(visu) .wait();

3 _ Image and Histogram [M:

Result :
Histogram manipulation and gamma
correction (example from example file

CImg_demo. cpp)

it I

PART Il of Il

Outline - PART Il of Il : More insights

= Image Filtering : Goal and principle.

e Convolution - Correlation.
e Morphomaths - Median Filter.
® Anisotropic smoothing.

e Other related functions.
e Image Loops : Using predefined macros.

e Simple loops.

e Neighborhood loops.
e The plug-in mechanism.
e Dealing with 3D objects.

e Shared images.

Context : Image Filtering

e Image filtering is one of the most common operations done on images in order to
retrieve informations.

Context : Image Filtering

e Image filtering is one of the most common operations done on images in order to
retrieve informations.

e Filtering is needed in the following cases :

— Compute image derivatives (gradient) VI = (4 %)T.

— Noise removal . Gaussian or Median filtering.
— Edge enhancement & Deconvolution : Sharpen masks, Fourier Transform.
— Shape analysis : Morphomath filters (erosion, dilatation,..)

Context : Image Filtering

e Image filtering is one of the most common operations done on images in order to
retrieve informations.

e Filtering is needed in the following cases :

— Compute image derivatives (gradient) VI = (4 %)T.

— Noise removal . Gaussian or Median filtering.
— Edge enhancement & Deconvolution : Sharpen masks, Fourier Transform.
— Shape analysis : Morphomath filters (erosion, dilatation,..)

e A filtering process generally needs the image and a mask (a.k.a kernel or
structuring element).

How filtering works ?

e For each point p € Q of the image I, consider its neighborhood N;(p) and combine
It with a user-defined mask M.

—2 3 7 1
1 —3
o :
- —4 .6
1 -2 ... 8 -5 |

e Neighborhood N;(p) and mask M have the same size.
e The operator ¢ may be linear, but not necessarily.

e The result of the filtering operation is the new value at p :

VpeQ, J(p)=Ni(p) e M

Filtering examples

(a) Original image (b) Derivative along x (c) Erosion

o Derivative obtained withe =xand M =[0.5 0 — 0.5]

e Erosion obtained with ¢ = min().

Outline - PART Il of Il : More insights

e Image Filtering : Goal and principle.

—> Convolution - Correlation.
e Morphomaths - Median Filter.
e Anisotropic smoothing.

e Other related functions.
e Image Loops : Using predefined macros.

e Simple loops.

e Neighborhood loops.
e The plug-in mechanism.
e Dealing with 3D objects.

e Shared images.

Linear filtering

e Convolution and Correlation implements linear filtering (e = x)

Convolution : J(z,y) =Y Y I(x—i,y—j)M(i,j)
i

Correlation : J(z,y) =Y Y I(z+iy+j) M(i,j)
i

e CImg<T>::get_convolve(), CImg<T>::convolve() and
CImg<T>::get_correlate(), CImg<T>::correlate().

e Compute image derivative along the X-axis :
CImg<> img(‘‘toto.jpg’’);

CImg<> mask = CImg<>(3,1).£fi11(0.5,0,-0.5);

img.convolve (mask) ;

Linear filtering (2)

e You can set the border condition in convolve() and correlate()

e Common linear filters are already implemented :

— Gaussian kernel for image smoothing :
CImg<T>::get_blur() and CImg<T>: :blur().
— Image derivatives
CImg<T>::get_gradient ("xy") and CImg<T>::get_gradient ("xyz").

—- Faster versions than using the CImg<T>: :convolve () function!

Blur an image with a Gaussian kernel with o = 10.

Using CImg<T>: :convolve() : 1129 ms.

Using CImg<T>: :blur() : 7 ms.

Linear filtering (3)

e When mask size is big, you can efficiently convolve the image by a multiplication
In the Fourier domain.

o CImg<T>::get_FFT() returns a CImgList<T> with the real and imaginary part of the
FT.

o CImg<T>::get FFT(true) returns a CImgList<T> with the real and imaginary part
of the inverse FT.

Outline - PART Il of Il : More insights

e Image Filtering : Goal and principle.

e Convolution - Correlation.
—> Morphomaths - Median Filter.
e Anisotropic smoothing.

e Other related functions.
e Image Loops : Using predefined macros.

e Simple loops.

e Neighborhood loops.
e The plug-in mechanism.
e Dealing with 3D objects.

e Shared images.

I\/Iorphomaths %lgu @ [“f !

e Nonlinear filters.

e Erosion : Keep the mininum value in the image neighborhood having the same
shape than the structuring element mask.
CImg<T>::erode() and CImg<T>: :get_erode().

e Dilatation : Keep the maximum value in the image neighborhood having the same
shape than the structuring element mask.
CImg<T>::dilate() and CImg<T>::get_dilate().

ald | -

(a) Original image (b) Erosion by a 10 x 10 kernel (b) Dilatation by a 10 x 10 kernel

Morphomaths (2) DRz O IS

e Opening : Erode, then dilate :
img.erode(10) .dilate(10);

e Closing : Dilate, then erode :
img.dilate(10) .erode(10) ;.

(a) Original image (b) Opening by a 10 x 10 kernel (b) Closing by a 10 x 10 kernel

Median filtering

e Nonlinear filter : Keep the median value in the image neighborhood having the
same shape than the mask.

e Functions CImg<T>::get_blur_median() and CImg<T>::blur_median().

e Near optimal to remove Salt&Pepper noise.

Outline - PART Il of Il : More insights

e Image Filtering : Goal and principle.

e Convolution - Correlation.
e Morphomaths - Median Filter.
—> Anisotropic smoothing.

e Other related functions.
e Image Loops : Using predefined macros.

e Simple loops.

e Neighborhood loops.
e The plug-in mechanism.
e Dealing with 3D objects.

e Shared images.

Anisotropic smoothing

e Non-linear edge-directed diffusion, very optimized PDE-based algorithm.
e Very efficient in removing Gaussian noise, or other additive noise.

e Able to work on 2D and 3D images.

e Function CImg<T>: :blur_anisotropic().

e A lot of applications : Image denoising, reconstruction, resizing.

Anisotropic smoothing

e CImg<T>::blur_anisotropic() implements the following diffusion PDE :

. oI, 2.1 [
Vi=1,...,n, 5 = trace(TH,;) + ;VIZ- / J /Fa, VTaa da
a=0
du Ou o%1; 0%l
Oox Oy Ox2 O0x 0y
where J,, = and H,; =
v v %1, 8%l
oxr Oy OxOy Oy?

e Image smoothing while preserving discontinuities (edges).

e One of the advanced filtering tool in the Clmg Library.

Application of CImg<T>::blur_anisotropic()

“Babouin” (détail) - 512x512 - (1 iter., 19s)

'rfczmn.lmumL
Application of CImg<T>::blur_anisotropic() oﬁﬁ:mam

N

-
et 2 1

Pt .h t-_ 1_ i
b
%i'::t"f‘&t?’-#& -

= -'::‘.'-_.:HT:'.I-.I-IJI."""._- ks

“Tunisie” - 555x367

Application of CImg<T>::blur_anisotropic()

“Tunisie” - 555x367 - (1 iter., 115s)

Application of CImg<T>::blur_anisotropic()

“Tunisie” - 555x367 - (1 iter., 115s)

Application of CImg<T>::blur_anisotropic() s

~ e -::'I:lrlzﬂ-i'-.-

“Bébe” - 400x375

Application of CImg<T>::blur_anisotropic()

“Bebé” - 400x375 - (2 iter, 5.8s)

Application of CImg<T>::blur_anisotropic()

-
[--I- "

1 k E

*

-
L, e
il 1]

& 1r~

b

4 :
"".-.-]
£

I".I-.
-.-,.

.."|"-'-l o
-" ...L.ﬂ'- l'.ri-';l.::tt I~

“Bébe” - 400x375 - (2 iter, 5.8s)

Application of CImg<T>::blur_anisotropic()

“Van Gogh”

Application of CImg<T>::blur_anisotropic()

“Van Gogh” - (1 iter, 5.122s).

Application of CImg<T>::blur_anisotropic()

“Fleurs” (JPEG, 10% quality).

Application of CImg<T>::blur_anisotropic()

“Corall” (1 iter.)

Application : Image Inpainting

“Bird”, original color image.

Application : Image Inpainting

“Bird”, inpainting mask definition.

Application : Image Inpainting

$|

“Bird”, inpainted with our PDE.

DE LA RECHERCHE

Application : Image Inpainting 3y N

“Chloé au zoo”, original color image.

DE LA RECHERCHE

Application : Image Inpainting)

“Chloé au zoo”, inpainting mask definition.

DE LA RECHERCHE

Application : Image Inpainting)

“Chloé au zoo”, inpainted with our PDE.

Application :

Image Inpainting and Reconstruction

“Parrot”
500x500
(200 iter.,
4m1ls)

“Owl”
320x246
(10 iter., 1mO1s)

Application : Image Resizing

(c) Details from the image resized by bicubic interpolation.

T8

(d) Details from the image resized by a non-linear regularization PDE.

Application : Image Resizing

(@) Original

color image

(b) Bloc Interpolation (c) Linear Interpolation (d) Bicubic Interpolation (e) PDE/LIC Interpolation

Outline - PART Il of Il : More insights

e Image Filtering : Goal and principle.

e Convolution - Correlation.
e Morphomaths - Median Filter.
e Anisotropic smoothing.

—> Other related functions.
e Image Loops : Using predefined macros.

e Simple loops.

e Neighborhood loops.
e The plug-in mechanism.
e Dealing with 3D objects.

e Shared images.

1

CENTRE NATIOIMAL

Adding noise to images S)

e CImg<T>::noise() and CImg<T>::get_noise().

e Can add different kind of noise to the image with specified distribution : Uniform,
Gaussian, Poisson, Salt&Pepper.

e One parameter that set the amount of noise added.

Retrieving image similarity

e Two indices defined to measure “distance” between two images I1 and 12 : MSE
and PSNR.

e MSE, Mean Squared Error : CImg<T>: :MSE(imgl, img?2).

> peaIlp) = 12()?
card(€2)

MSE(I1,12) =

The lowest the MSE is, the closest the images /1 and 12 are.

e PSNR, Peak Signal to Noise Ratio : CImg<T>: :PSNR(imgl,img2).

M

where M is the maximum value of 11 and 2.

Filtering in CImg : Conclusions

e A lot of useful functions that does the common image filtering tasks.

e Linear and Nonlinear filters.

e But what if we want to define to following filter ???

vpeQ, J(x,y)=>» mod(I(z—iy—j),M(,j))

= There are smart ways to define your own nonlinear filters, using neighborhood
loops.

Outline - PART Il of Il : More insights

e Image Filtering : Goal and principle.

e Convolution - Correlation.
e Morphomaths - Median Filter.
e Anisotropic smoothing.

e Other related functions.
= Image Loops : Using predefined macros.

e Simple loops.

e Neighborhood loops.
e The plug-in mechanism.
e Dealing with 3D objects.

e Shared images.

Outline - PART Il of Il : More insights

e Image Filtering : Goal and principle.

e Convolution - Correlation.
e Morphomaths - Median Filter.
e Anisotropic smoothing.

e Other related functions.
e Image Loops : Using predefined macros.

— Simple loops.
e Neighborhood loops.

e The plug-in mechanism.
e Dealing with 3D objects.

e Shared images.

Simple loops

e Image loops are very useful in image processing, to scan pixel values iteratively.

e Clmg define macros that replace the corresponding for(..;..;..) Instructions.

cimg_forX(img,x) for (int x=0; x<img.width(); x++)

cimg_forY(img,y) for (int y=0; y<img.height(); y++)

cimg_forZ(img,z) for (int z=0; z<img.depth(); z++)

Tt T

cimg_forC(img,c) for (int c¢=0; c<img.spectrum(); c++)

Simple loops

e Image loops are very useful in image processing, to scan pixel values iteratively.

e Clmg define macros that replace the corresponding for(..;..;..) Instructions.

cimg_forX(img,x) for (int x=0; x<img.width(); x++)

cimg_forY(img,y) for (int y=0; y<img.height(); y++)

cimg_forZ(img,z) for (int z=0; z<img.depth(); z++)

Tt T

cimg_forC(img,c) for (int c¢=0; c<img.spectrum(); c++)

e Clmg also defines :

cimg_forXY(img,x,y) < cimg_forY(img,y) cimg_forX(img,x)
cimg_forXYZ(img,x,y,z) < cimg_forZ(img,z) cimg_forXY(img,x,y)
cimg_forXYZC(img,x,y,z,c) < cimg forC(img,c) cimg forXYZ(img,x,y,z)

Simple loops (2)

e These loops lead to natural code for filling an image with values :

CImg<unsigned char> img(256,256);
cimg_forXY(img,x,y) { img(x,y) = (x*xy)%h256; }

Simple loops (2)

e These loops lead to natural code for filling an image with values :

CImg<unsigned char> img(256,256);
cimg_forXY(img,x,y) { img(x,y) = (x*xy)%h256; }

Interior and Border loops

e Slight variants of the previous loops, allowing to consider only interior or image
borders.

e An extra parameter n telling about the size of the image border.

cimg_for_insideXY(img,x,y,n) and cimg_for_borderXY(img,x,y,n) (Same for 3D
volumetric images).

CImg<unsigned char> img(256,256) ;
cimg_for_insideXY(img,x,y,64) img(x,y) = x+y;
cimg_for_borderXY(img,x,y,64) img(x,y) = x-y;

Outline - PART Il of Il : More insights

e Image Filtering : Goal and principle.

e Convolution - Correlation.
e Morphomaths - Median Filter.
e Anisotropic smoothing.

e Other related functions.
e Image Loops : Using predefined macros.

e Simple loops.

—> Neighborhood loops.
e The plug-in mechanism.
e Dealing with 3D objects.

e Shared images.

Neighborhood-based loops

e Very powerful loops, allow to loop an entire neighborhood over an image.
e From 2 x 2to 5 x 5 for 2D neighborhood.

e From 2 x 2 x 210 3 x 3 x 3 for 3D neighborhood.

e Border condition : Nearest-neighbor.

e Need an external neighborhood variable declaration.

e Allow to write very small, clear and optimized code.

Neighborhood-based loops: 3 x 3 example

e Neighborhood declaration :

CImg_3x3(I,float).

Neighborhood-based loops: 3 x 3 example

e Neighborhood declaration :

CImg_3x3(I,float).

e Actually, the line above defines 9 different variables, named :

Ipp | Icp | Inp
Ipc | Icc | Inc

Ipn | Icn | Inn

where p = previous, c = current, n = next.

Neighborhood-based loops: 3 x 3 example

e Neighborhood declaration :

CImg_3x3(I,float).

e Actually, the line above defines 9 different variables, named :

Ipp | Icp | Inp
Ipc | Icc | Inc

Ipn | Icn | Inn

where p = previous, c = current, n = next.

e Using a cimg_for3x3() automatically updates the neighborhood with the correct
values.

cimg_for3x3(img,x,y,0,0,I,float) {
. Here, Ipp, Icp, ... Icn, Inn are updated ...

Neighborhood-based loops

e Example of use : Compute the gradient norm with one loop.

CImg<float> img(‘‘milla.jpg’’), dest(img);

CImg_3x3(I,float);

cimg_forC(img,v) cimg_for3x3(img,x,y,0,v,I,float) {
const float ix = (Inc-Ipc)/2, iy = (Icn-Icp)/2;
dest(x,y) = std::sqrt(ix*ix+iy*iy);

Example : Modulo Filtering

e What if we want to define to following filter ???

vpeQ, J(x,y)=>» mod(I(z—iy—j),M(,j))

Example : Modulo Filtering

e What if we want to define to following filter ???

vpeQ, J(x,y)=>» mod(I(z—iy—j),M(,j))

e Simple solution, using a 3x3 mask :

CImg<unsigned char> img(‘‘milla.jpg’’), mask(3,3);
CImg<> dest(img);
CImg_3x3(I,float);
cimg_forV(img,v) cimg_for3x3(img,x,y,0,v,I)
dest (x,y) = mask(0,0)%Ipp + mask(1,0)%Icp + mask(2,0)%Inp
+ mask(0,1)%Ipc + mask(1,1)%Icc + mask(2,1)%Inc
+ mask(0,2)%Ipn + mask(1,2)%Icn + mask(2,2)%Inn;

Outline - PART Il of Il : More insights

e Image Filtering : Goal and principle.

e Convolution - Correlation.
e Morphomaths - Median Filter.
e Anisotropic smoothing.

e Other related functions.
e Image Loops : Using predefined macros.

e Simple loops.

e Neighborhood loops.
= The plug-in mechanism.
e Dealing with 3D objects.

e Shared images.

Clmg plugins

e Sometimes an user needs or defines specific functions, either very specialized or
not generic enough.

e Not suitable to be integrated in the Clmg Library, but interesting to share anyway.

Clmg plugins

e Sometimes an user needs or defines specific functions, either very specialized or
not generic enough.

e Not suitable to be integrated in the Cimg Library, but interesting to share anyway.

= Integration possible in Cimg via the plug-ins mechanism.

¢

#define cimg_plugin
#include ‘CImg.h’’

using namespace cimg_library,

‘my_plugin.h’’

int main() {
CImg<> img(‘‘milla.jpg’’);
img.my_wonderful_function() ;

return O;

Clmg plugins

CImg<T> my_wonderful_function() {
(*this)=(T)3.14f;

return *this;

Clmg plugins

e Plugin functions are directly added as member functions of the Clmg class.

// File ‘‘my_plugin.h’’

CImg<T> my_wonderful_function() {
(*this)=(T)3.14f;
return *this;

¥

e Very flexible system, implemented as easily as :

class CImg<T> {

#i1fdef cimg_plugin
#include cimg_plugin
#endif

Jr

Clmg plugins

e Advantages :

— Allow creations or modifications of existing functions by the user, without
modifying the library source code.

Clmg plugins

e Advantages :

— Allow creations or modifications of existing functions by the user, without
modifying the library source code.
— Allow to specialize the library according to the user’s work.

Clmg plugins

e Advantages :

— Allow creations or modifications of existing functions by the user, without
modifying the library source code.
— Allow to specialize the library according to the user’s work.
— Allow an easy redistribution of useful functions as open source components.
= A very good way to contribute to the library.

Clmg plugins

e Advantages :

— Allow creations or modifications of existing functions by the user, without
modifying the library source code.
— Allow to specialize the library according to the user’s work.
— Allow an easy redistribution of useful functions as open source components.
= A very good way to contribute to the library.

e EXisting plugins in the default CImg package :

— Located in the directory CImg/plugins/
— cimg_matlab.h : Provide code interface between Clmg and Matlab images.

— nlmeans.h : Implementation of Non-Local Mean Filter (Buades etal).
— noise_analysis.h : Advanced statistics for noise estimation.
— toolbox3d.h : Functions to construct classical 3D meshes (cubes, sphere,...)

CImg plugins MR sz @ st

e Plug-ins variables :

— #define cimg_plugin : Add functions to the CImg<T> class.
— #define cimglist_plugin: Add functions to the CImgList<T> class.

e Using several plug-ins is possible : #define cimg_plugin ‘‘all_plugins.h’’.

// file ‘‘all_plugins.h’’

#include °‘pluginl.h’’
#include °‘plugin2.h’’
#include ‘‘plugin3.h’’

= With the plugin mechanism, Cimg is a very open framework for image processing.

Outline - PART Il of Il : More insights

e Image Filtering : Goal and principle.

e Convolution - Correlation.
e Morphomaths - Median Filter.
e Anisotropic smoothing.

e Other related functions.
e Image Loops : Using predefined macros.

e Simple loops.

e Neighborhood loops.
e The plug-in mechanism.
= Dealing with 3D objects.

e Shared images.

3D Object Visualization : Context

e In a lot of image processing problems, one needs to reconstruct 3D models from
raw image datasets.

— 3D from stereo images/multiple cameras.
— 3D surface reconstruction from volumetric MRI images.
— 3D surface reconstruction from points clouds (3D scanner).

3D Object Visualization : Context

— Basic and intergrated 3D meshes visualization capabilities may be useful in any
Image processing library.

e ... but we don't want to replace complete 3D rendering libraries (openGL,
Direct3D, VTK, ...).

e Clmg allows to visualize 3D objects for punctuals needs.

— Can displays a set of 3D primitives (points, lines, triangles) with given opacity.
— Can render objects with flat, gouraud or phong-like light models.

— Contains an interactive display function to view the 3D object.

— Texture mapping supported.

— No multiple lights allowed.

— No GPU acceleration.

3D Object Visualization : Live Demo

e Mean Curvature Flow.
e Image as a surface.

Toolbox3D.

3D Object Visualization : How does it works ?

e Clmg has a CImg<T>: :draw_x*() function that can draw a projection of a 3D object
Into a 2D image :

CImg<T>::draw_object3d ()

3D Object Visualization : How does it works ?

e Clmg has a CImg<T>: :draw_x*() function that can draw a projection of a 3D object
Into a 2D image :

CImg<T>::draw_object3d ()

e High-level interactive 3D object display :

CImg<T>::display_object3d()

= All 3D visualization capabilities of CImg are based on these two functions.

3D Object Visualization : How does it works ?

e Clmg has a CImg<T>: :draw_x*() function that can draw a projection of a 3D object
Into a 2D image :

CImg<T>::draw_object3d ()

e High-level interactive 3D object display :

CImg<T>::display_object3d()
= All 3D visualization capabilities of CImg are based on these two functions.

e Needed parameters :

— A CImgList<tp> of 3D points coordinates (size M).

— A CImgList<tf> of primitives (size N).

— A CImgList<T> of colors/textures (size N).

— A CImgList<to> of opacities (size N) (optional parameter).

Display a house : building point list

CImgList<float> points(9,1,3,1,1,

-50,-50,-50, // Point 0
50,-50,-50, // Point 1
50,50, -50, // Point 2
-50,50,-50, // Point 3
-50,-50,50, // Point 4
50,-50,50, // Point 5
50,50, 50, // Point 6
-50,50,50, // Point 7
0,-100,0); // Point 8

= List of 9 vectors (images 1x3) with specified coordinates.

Display a house : building primitives list

CImglist<unsigned int> primitives(6,1,4,1,1,
0,1,5,4, // Face O
3,7,6,2, // Face 1
1,2,6,5, // Face 2
0,4,7,3, // Face 3
0,3,2,1, // Face 4
4,5,6,7); // Face 5
primitives.insert(CImgList<unsigned int>(4,1,2,1,1,
0,8, // Segment 6
1,8, // Segment 7
5,8, // Segment 8
4,8)); // Segment 9

= List of 10 vectors : 6 rectangle + 4 segments.

Display a house : building colors

CImgList<unsigned char> colors;
colors.insert(6,CImg<unsigned char>::vector(255,0,255));
colors.insert (4,CImg<unsigned char>::vector(255,255,255));

e Then,.... visualize.

CImg<unsigned char>(800,600,1,3).fi11(0).

display_object3d(points,primitives,colors);

Display a transparent house : setting primitive opacities

CImgList<float> opacities;
opacities.insert(6,CImg<>::vector(0.5f));
opacities.insert(4,CImg<>::vector(1.0f));

e Then,.... visualize.

CImg<unsigned char>(800,600,1,3).£i11(0).

display_object3d(points,primitives,colors,opacities);

e Other parameters of the 3D functions allow to set :

e Light position, and ambiant light intensity.
e Camera position and focale.

e Rendering type (Gouraud, Flat, ...)

e Double/Single faces.

How to construct 3D meshes ?

e Plugin: CImg/plugins/primitives.h contains useful functions to retrieve classical
meshes.

CImg<T>::cube(), CImg<T>: :sphere(), CImg<T>::cylinder(), ...
e Library functions : CImg<T>: :marching_cubes() and CImg<T>: :marching_squares().

= Create meshes from implicit functions.

-
-y VP
T=2d

CImg<> img(‘‘volumeMRI.inr’’);

CImg<> region;

float black[1]={0};
img.draw_fil11(X0,Y0,Z0,black,region,10.0f);
(region*=-1) .blur(1.0f) .normalize(-1,1);

CImgList<> points, faces;
region.marching_cubes(0,points,faces);
CImgList<unsigned char> colors;

colors.insert(faces.size,CImg<unsigned char>::vector(200,100,20));

CImg<unsigned char>(800,600,1,3).£i11(0).
display_object3d(points,faces,colors);

CENTRE MATIONAL
DE LA RECHERCHE

Example : Segmentation of the white matter from MRI images%h ----------

Example : Isophotes with marching squares

Outline - PART Il of Il : More insights

e Image Filtering : Goal and principle.

e Convolution - Correlation.
e Morphomaths - Median Filter.
e Anisotropic smoothing.

e Other related functions.
e Image Loops : Using predefined macros.

e Simple loops.

e Neighborhood loops.
e The plug-in mechanism.
e Dealing with 3D objects.

= Shared images.

Shared images : Context

e Two frequent cases with undesired image copies :

1. Sometimes, we want to pass contiguous parts of an image (but not all the image)
to a function :

const CImg<> img(‘‘milla.jpg’’);
CImgList<> RG = img.get_channels(0,1).get_split(’v’);

Shared images : Context

e Two frequent cases with undesired image copies :

1. Sometimes, we want to pass contiguous parts of an image (but not all the image)
to a function :

const CImg<> img(‘‘milla.jpg’’);

CImgList<> RG = img.get_channels(0,1).get_split(’v’);

2. ..0r, we want to modify contiguous parts of an image (but not all the image) :

CImg<> img(‘‘milla.jpg’’);
img.draw_image (img.get_channel (1) .blur(3),0,0,0,1);

Shared images : Context

e Two frequent cases with undesired image copies :

1. Sometimes, we want to pass contiguous parts of an image (but not all the image)
to a function :

const CImg<> img(‘‘milla.jpg’’);
CImgList<> RG = img.get_channels(0,1).get_split(’v’);

2. ..0r, we want to modify contiguous parts of an image (but not all the image) :

CImg<> img(‘‘milla.jpg’’);

img.draw_image (img.get_channel (1) .blur(3),0,0,0,1);

= ... But we also want to avoid image copies for better performance...

Shared images

e Solution : Use shared images :
1. Replace :
const CImg<> img(‘‘milla.]jpg’’);

CImgList<> RG = img.get_channels(0,1).get_split(’v’);

by const CImg<> img(‘‘milla.jpg’’);
CImgList<> RG = img.get_shared_channels(0,1).get_split(’v’);

Shared images

e Solution : Using shared images :

2. Replace :
CImg<> img(‘‘milla.jpg’’);

img.draw_image (img.get_channel(1) .blur(3),0,0,0,1);

by CImg<> img(‘‘milla.jpg’’);
img.get_shared_channel(1) .blur(3);

Shared images

e Regions composed of contiguous pixels in memory are candidates for being
shared images :

e CImg<T>::get_shared_point[s] ()

e CImg<T>::get_shared_row[s]()

e CImg<T>::get_shared_plane[s] ()

o CImg<T>::get_shared_channel[s] ()
o CImg<T>::get_shared()

e Image attribute CImg<T>::is_shared tells about the shared state of an image.
e Shared image destructor does nothing (no memory freed).

= Warning : Never destroy an image before its shared version !!

Shared images and CImgList<T>

e Inserting a shared image Clmg<T> into a CImgList<T> makes a copy :

ClmgList<> list;
CImg<> shared = img.get_shared_channel(0);
list.insert (shared);

shared.assign(); // 0K, ’list’ not modified.

e Function CImgList<T>::insert() can be used in a way that it forces the insertion
of a shared image into a list.

CImgList<unsigned char> colors;
CImg<unsigned char> color = Clmg<unsigned char>::vector(255,0,255);
list.insert (1000, colors,list.size,true);

color.fil11(0); // ’list’ will be also modified.

Conclusion

Conclusion and Links ks s @ fnuass

e The Clmg Library eases the coding of image processing algorithms.

e For more details, please go to the official Cimg site !

http://cimg.sourceforge.net/
e A’complete’ inline reference documentation is available (generated with doxygen).

e A lot of simple examples are provided in the Clmg package, covering a lot of
common image processing tasks. It is the best information source to understand
how CImg can be used at a first glance.

e Finally, questions about Cimg can be posted In its active Sourceforge forum :
(Available from the main page).

Conclusion and Links

e Now, you know almost everything to handle complex image processing tasks with
the Clmg Library.
= You can contribute to this open source project :

— Submit bug reports and patches.
— Propose new examples or plug-ins .

Used in real world : “GREYCstoration”

e This anisotropic smoothing function has been embedded in an open-source
software : GREYCstoration .

— Distributed as a free command line program or a plug-in for GIMP.

= http://www.greyc.ensicaen.fr/” dtschump/greycstoration/

L] T .'I 1461, G | = :| n1% :;{:-‘rt'w'-i-irq'llhﬂm

uuuuuuuuuuuu

Used in real world : DT-MRI Visualization and FiberTracking “ks ==

e DTMRI dataset visualization and fibertracking code is distributed in the Climg
package (File examples/dtmri_view.cpp, 823 lines).

Corpus Callosum Fiber Tracking

The end

Thank you for your attention.

Time for additional questions if any ..

